Partitions are used to separate buildings, enclose compartments and contain fire by providing a barrier to the passage of fire from one side or the other, or both. In doing so, they are able to satisfy each of the relevant fire resistant criteria (integrity, insulation and, if the wall is loadbearing, load bearing capacity) from either side for the prescribed period.

The application of partition and external wall systems using Promat boards covers both non loadbearing and loadbearing in commercial, industrial, institutional, residential and high rise constructions, or in the restoration of existing buildings. Promat’s internal partition systems require less material to achieve similar fire resistant level when compared to industry average wallboard partition systems. The single layer board application leads to simplified construction methods over other equivalents and in turn to increased productivity and reduced overall installation cost.

These partition and external wall systems have been developed by Promat International (Asia Pacific) Ltd to satisfy standard requirements for intended applications. Such considerations include:

Time & Cost Effectiveness
Single layer application reduces installation cost and time compared to traditional wallboard constructions.

Slim Walls
Partitions can be as thin as 35mm.

Lightweight
Lighter loads on structures compared to industry average wallboard partition systems for equivalent fire resistance.

Thermal Resistance
Excellent thermal resistance performance.

Impact Resistant
PROMATECT®-H partition systems have been tested for resistance to impact, stiffness and robustness in accordance with the criteria of BS 5234: Part 2.

Acoustic Performance

Fire Resistance Performance
Promat partitions and external wall systems have been extensively tested and assessed in accordance with BS 476: Parts 21 and 22 and AS 1530: Part 4 to satisfy the integrity, insulation and where applicable loadbearing capacity (structural adequacy) criteria.
General Design Considerations

For Partitions

Following are some of the factors to take into account when determining correct specifications that ensure a partition provides required design performance under both fire and ambient conditions.

1 Studwork Design

The design of studwork should be adequate for the height of the partition. The studwork details given in the following specifications are suitable up to the maximum heights stated. For greater heights the dimension of the framing members could change depending upon factors such as movement and deflection, and local approvals. Larger or more frequent frame sections will often improve fire and structural performance.

The studwork shall be appropriately designed for the applied loads, e.g. wind load, and where applicable structural load in the case of load bearing systems. The framing for the partition systems must be securely fixed back to a substrate that has an equal or greater fire performance than the designed partition. All fixings must be non combustible and must be those listed in the approval documents. The design shall be in accordance with the relevant British, Australian and/or International Standards.

2 Non Loadbearing Partitions

Non loadbearing partitions and external wall systems using Promat boards can be generally categorised as framing systems consisting of steel or timber studs and solid partitions. For steel stud systems, selection of suitable stud size shall be in accordance with the maximum partition height given in the stud selection tables. The partition systems in the following pages, where stated, are designed for lateral loads of up to 0.25kPa using the composite action of the frame and boarding.

3 Loadbearing Partitions

Loadbearing capacity of featured partition systems in this handbook are calculated in accordance with BS 5950-8: 2003 and AS 4600: 1996 for load cases defined by AS 1170: 2002. The maximum load bearing capacity is given in kN for a given partition height taking into account the reduction in steel strength at elevated temperature.

Studs are located at 610mm maximum centres with noggings. Loads considered in this manual are for axial compression only. Wind and other loads have not been taken into consideration. For further information on these loads, please consult Promat.

4 Deflection

Where differential movement is expected between the floor or beam above the construction and/or the floor below, it is generally advisable to incorporate a deflection head track to ensure undue stress is not placed upon the partition. This also allows for the sagging and deflection of a floor or structural beam will be subjected to under fire conditions. Even concrete floors will suffer considerable deflection under fire if exposed for any extended duration.

Some form of movement joint is also required to allow for the expansion of the studs under fire conditions. A partition will also bow at its centre. As the wall bows, it naturally becomes shorter. For this reason alone, use should be made of a top track with long side legs. This will allow the stud to bow and as a result drop down, without the studs dropping out of the head track.

5 Movement Joint

Movement stress from dimensional changes due to varying temperature or moisture conditions can cause cracking and other symptoms of distress in partitions. Other external forces such as impact or vibration can directly affect the structural movement of partitions. This movement can be controlled through a variety of design techniques such as introducing perimeter relief and slip connections to reduce the transfer of stress from the structure to other building sub elements and/or through the use of expansion joints, control joints and construction joints.

In a partition, expansion joints are needed when the partition abuts a rigid mass. A vertical movement joint should be located at maximum 10000mm centres in long runs of partition. However, introducing a control joint into a fire resistant partition creates an opening for flame and temperature transmission. Such openings must also be treated with approved fire stopping systems.

Please refer to page 12 for further details on movement joints.

6 Caulking & Service Penetrations

To maintain fire and where applicable acoustic performance of the partition system, gaps at the perimeter must be appropriately filled with suitable caulk material. PROMASEAL® A Acrylic Sealant or other tested fire and acoustic resistant material of equivalent or better performance must be used.

Care needs to be taken in detailing a suitable fire stopping system around any penetration of the partition by services to ensure that the fire-stopping material remains in situ, and fire and smoke do not penetrate the partition.

Allowance should be made for thermal movement of the services in both ambient and fire conditions to ensure loads are not applied to the partition. Some examples of service penetrations include electrical cables, conduits or wires, switches and power outlets, plastic and metal pipes, air conditioning and ventilation ductwork. Further guidance on the penetration seals of these elements can be obtained on the PENETRATION SEALS section this handbook.

7 Fire Doors & Glazing

Tested or assessed door and/or glazed assemblies should always be used. All and any doors or glazed elements with a fire resistant wall should be shown, by fully compliant testing to the appropriate standard, to be capable of providing at least an equal fire performance to the wall itself. This means fire doors should be tested in lightweight partition systems, not just in masonry. In most cases additional framework will be required to prevent loads being applied to the partition. Careful detailing is needed around the perimeter of any door or glazed assembly. Further guidance on the detailing at fire doors and glazing is available on page 13.

8 Partition Junction

Care must be taken to ensure that partition corner junctions and intersections are stable for both fire and ambient conditions. Framing at these locations must be mechanically fastened together. Further information on the detailing these junctions can be found on page 9.

General Design Considerations

For External Walls

In the case of external walls, the proximity of a building to the relevant (facing) boundary determines the probability of it being a danger to other buildings on adjoining sites (if it is on fire) or it being at risk from a neighbouring building on fire. Requirements made in connection with building regulations therefore specify different performances for external walls depending upon their distance from the relevant boundary.

Where the walls are permitted to provide fire resistance only from the inside, loadbearing capacity and integrity are required to be satisfied for the full period, whereas insulation is sometimes required for only 15 minutes. This means that satisfactory constructions will be very different from those required to maintain insulation for the full period and where fire resistance is required from either side.

Promat
Following are some of the factors to take into account when determining correct specifications that ensure an external wall provides required fire performance.

1 Distance From Relevant Boundary
The guidance given in appropriate building regulations does sometimes relax the requirements for those external walls which are one metre or more from the relevant property boundary. In most of these cases, the wall only needs to be tested or assessed for its performance when exposed to fire from within the building. In addition, the maximum insulation period required is often only 15 minutes.

Due to differences in various national regulatory requirements, local building codes should be checked before applying the following systems.

2 External Cladding
The external cladding can significantly affect the overall fire performance of an external wall. For example, some composite external cladding panels with expanded polyurathane cores may perform much worse than a single skin steel sheet due to the low melting point and toxicity of the core.

3 Structural Steel
All structural steel within a fire protected external wall may also need to be protected. This includes walls which may only require to be partially protected. If the steel frame of a single storey building has not been designed in accordance with the document, "Fire and Steel Construction: The Behaviour of Steel Portal Frames in Boundary Conditions, 1990 (2nd edition)" published by British Steel Construction Institute, or equivalent regulatory advice, the rafters of the roof may also need protection as their failure could lead to collapse of the external wall.

Generally, any steelwork located on the non-fire side of a PROMATECT®-H or PROMINA® 60 wall lining will be adequately fire protected.

4 Single Storey Buildings
The external walls of single storey buildings which may otherwise not require to be fire protected, may still require protection if they are too close to the relevant boundary.

5 Cavity Barriers
Local building regulations guidance documents will specify where provision of cavity barriers is required.

6 Thermal Insulation
U-values will depend on the complete wall design. These U-values can be improved by the addition of more insulation materials.

7 Impact Resistance
PROMATECT®-H is robust and reasonably impact resistant. Where there is risk of heavy impact however, and in most cases below a height of 2000mm above floor level, it is advisable to introduce additional framing members as stiffening components. Protection barriers or masonry walls 2000mm high are often advisable.

8 Wind Loading
Both PROMATECT®-H and PROMINA® 60 external walls offer good resistance to wind induced internal pressures. Please consult Promat if there are predominant openings in the external envelope of the building.

Steel Frame Components

Board Fixing
Promat boards can be installed horizontally or vertically.

For steel stud partition system, joints in the boards must be staggered between either side of the framing with all the joints located at a framing member. The boards may be fixed to the studs using No.8 bugle head self-drilling and self-tapping screws of a length appropriate for the board thickness. Needle point screws are normally used to fix boards to light gauge steel frames up to 0.8mm. Drill point screws are generally appropriate for heavy gauge steel frames from 0.8mm to 2.0mm.

When a timber frame is used, Promat boards are fixed to the framework using wire nails of a length appropriate for the board thickness and the required fire resistance performance at nominal 300mm centres and minimum 12mm from the board edge. Minimum edge distance to fasteners and the maximum spacing between nails must be maintained.

Internal and external corners may be set using a perforated metal corner bead fixed to the board linings at not more than 500mm centres.

Components Selection
Construction of Promat fire resistant steel stud partitions can be achieved using Rondo stud and track components. Other steel components of equivalent performance can of course be used but it is the responsibility of the manufacturer of the component to substantiate equivalent performance with the recommended component.

Continued on next page
Fixing of spliced vertical studs for partition heights up to 7000mm

<table>
<thead>
<tr>
<th>Splice location in wall</th>
<th>Minimum required fasteners on both sides of studs over the splice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10%</td>
<td>2 pieces</td>
</tr>
<tr>
<td>10% to 25%</td>
<td>3 pieces</td>
</tr>
</tbody>
</table>

NOTE: The splice location percentage refers to the height of the partition. For example, taking a partition 10000mm high, a 10% splice location would be located within 1000mm of the top or bottom of the wall. A 25% splice location would be within 2500-5000mm of the top or bottom of a 10000mm high wall.

- Splices should be alternate subsequently at top and bottom of wall
- Do not splice studs between 25% and 75% of wall height
- Splicing of studs is recommended for non-loadbearing partitions only
- Where splicing is not possible due to the height, use fully boxed sections

Steel Frame Components

Deflection Head & Bottom Tracks

The main function of the ceiling and floor tracks is to hold the studs in position until the board is fitted. They provide a friction fit for the studs and also act as a slip joint to allow for any movement in the structure.

The track sections come in two basic profiles. A standard track has a nominal 32mm flange whilst the deflection head track has a nominal 50mm flange. However, head tracks with wider flange are available but they have to be specially designed for instances where clearance for expansion at the head track exceeds 20mm.

No clearance for expansion is applicable at the head track for a loadbearing partition. Track sections should be fixed at maximum 610mm intervals to the supporting structure. Fixings should be located not more than 100mm from either end of the track section.

Vertical Studs

The recommended Rondo studs come in 0.50mm, 0.55mm, 0.75mm and 1.15mm. The 0.50mm to 0.75mm studs have standard 25mm bell-mouthed service holes for electrical cabling. For the 1.15mm stud, round holes are punched at designated centres along the stud.

Spliced extensions are possible in situations where the overall height of the partition is more than the stud length. The 0.50mm to 0.75mm studs may be boxed and the 1.15mm studs may be spliced back to back.

For greater rigidity at fire resistant glazing and door openings, and also at locations where extra load carrying capacity is required, studs of 0.50mm to 0.75mm may be boxed and studs of 1.15mm may be fixed back to back. See guide below on spliced studs and stiffening framing.
Nogging Track

Noggings are necessary to provide bracing to the partition studs and preventing the studs from twisting when fitting the lining boards. The noggings are to be screwed, rivetted or crimped to both flanges of the studs. Continuous nogging tracks 0.55mm and 0.75mm are available from Rondo. This nogging track can be fitted to the stud framing in one length. Alternatively, individual noggings may be cut from the track. Noggings of 0.75mm can be used with 1.15mm studs.

TOP TRACK FIXING

Track to be structurally designed in accordance with BS 5950 or AS 4600, for the given opening dimensions.

BOTTOM TRACK FIXING

Track to be fastened to substrate floor and ceiling with M6 anchor bolts 40mm long at maximum 600mm centres. Studs can be installed vertically at 600-610mm centres depending on the board size used.

HORIZONTAL TRACK USING STEEL STUDS

- Studs to be cut to a short length and screwed in between each of the vertical studs.
- Cut the base of the track leaving two short studs either side. Insert the noggings between the vertical steel studs and fix through the studs into the vertical studs on either side, using only steel rivets or screws.
- All horizontal joints of the boards are to be fixed to the noggings.

HORIZONTAL TRACK USING STEEL CHANNELS

- Steel channel cut to length and screw fixed to the both sides of the vertical studs.
- All horizontal joints of the boards are fixed to the nogging.

HORIZONTAL JOINTS WITH BOARD STRIPS

- Cover fillets minimum 75mm wide cut from main lining boards. Fix board to board using stitching screws of a length appropriate to the board thickness, at maximum nominal 200mm centres.
- All horizontal joints of the boards to be covered and fixed by board strips.
Timber Frame Components

Timber Frame

Timber has very good performance in fire. It does burn but at a relatively slow and to a predictable depth known as the charring rate. This is one major advantage of using timber over steel because the fire resistance of timber elements of construction may be calculated based on a predictable charring rate.

Timber also has a very low thermal conductivity value and hence does not heat uniformly. Therefore, timber material a few millimetres inside the burning zone is just warm. The formation of a self insulating char provides some resistance to further heat penetration.

Unlike materials with a high thermal conductivity such as steel, there are less problems associated with expansion or loss of strength due to increases in temperature over the whole section in timber. This means that in some instances timber retains its structural integrity better than steel.

There are many different types of timbers and they all char at varying rates. Higher density timbers char generally (but not always) more slowly than those of lower density. Denser hardwoods used for structural purposes, such as jarrah, teak, keruing and greenheart, char at a rate of approximately 15mm in 30 minutes. Lower density (<650kg/m³) softwood timbers such as Western red cedar have an estimated charring rate of 25mm in 30 minutes.

Tables are available which can provide a definitive charring rate for a specific timber species, and can be based on the use of heartwood or sapwood of the given species.

Studs & Cross Noggings

The frame used in timber stud partitions generally consists of 90mm deep x 45mm wide softwood timber. The fire performance of the partition system accounts for the loss of the timber section due to charring effect without compromising the fire performance of the partition.

Where the boards are to be installed with their long edges vertical, the studs are located at maximum 600mm or 610mm centres (depending on the board width) with cross noggings at 1200mm or 1220mm centres. Where the boards are to be installed with their long edges horizontal, the studs are located at 600mm or 610mm centres with cross noggings at 1200mm or 1220mm centres.

The cross noggings may be fixed to the studs using nails or woodscrews of at least 100mm long. See fixing methods at left. Either method can be adopted to fix the cross noggings.

Top & Floor Plates

The top and floor plates are to be of the same material and dimensions as the studs. They are to be secured to the surrounding structure with minimum 100mm long M6 masonry anchors at nominal 600mm centres with the drilled depth into the concrete structure of at least 40mm. Polyamide nylon anchor sleeves may be allowed for use with timber framing.

The vertical studs are fixed to the top and floor plates using either nails or woodscrews of at least 100mm long in the manner shown in the left picture.

Loadbearing Partition

Where a partition is loadbearing, the required size of the stud shall be calculated by a suitably qualified structural engineer. Care should be taken to ensure that the loadbearing partition has been designed to resist all applied loads and in accordance with BS 5268: Part 4, AS 1720: Part 1 or AS 1684. Generally, the fire performance and the load carrying capacity will improve by increasing the cross-sectional dimensions of the timber elements and/or decreasing the stud spacing.
Acoustics In Building

Sound is a form of energy generated by a source, transmitted through a medium and collected by a receiver. It can be pleasant to be heard, such as music and speeches, while some, such as scratching a glass surface with a sharp object, are irritating. This offensive sound is commonly termed noise. The acoustic design of buildings can be divided into two basic requirements, noise control and room acoustics.

Noise control relates to the quantity of sound with an objective to ensure the sound level does not adversely affect the comfort of building occupants. This involves control of sound produced in a room, such as telephones ringing, as well as limiting the noise entering from other rooms or outside the building. A common solution targeting this problem is the introduction of sound absorption systems.

Room acoustics relate to the quality of sound with an objective to enhance the quality of desired sound within a room. This involves factors such as speech intelligibility and perception of musical clarity. The most widely applied solution employed by building designers is the use of a sound insulating system.

A point worth noting is that although both noise control and room acoustics have independent objectives, they are however inter-related in practice. As this section of technical handbook covers partition and ceiling systems, the following concentrates only on issues related to sound insulation which involves transmission loss (TL) of airborne sound.

Sound Transmission & Classification

The sound transmission loss of a building element, such as a partition, is a measure of how much sound is reduced as it passes through the barrier, expressed in dB or decibels, the unit used to quantify sound. The generally accepted term for the single number ratings for sound transmission loss is the Sound Transmission Class or STC (ASTM E413-87). This is determined by comparing the TL value to the reference curve in ASTM E413-87. Generally the higher the STC (ASTM E413-87). This is determined by comparing the TL value to the reference curve in ASTM E413-87. Generally the higher the STC value, the better the performance of the system. The following table provides a rough idea of what various STC levels mean in terms of privacy afforded.

<table>
<thead>
<tr>
<th>STC</th>
<th>Privacy afforded</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Normal speech easily understood</td>
</tr>
<tr>
<td>30</td>
<td>Normal speech audible, but unintelligible</td>
</tr>
<tr>
<td>35</td>
<td>Loud speech understood</td>
</tr>
<tr>
<td>40</td>
<td>Loud speech audible, but unintelligible</td>
</tr>
<tr>
<td>45</td>
<td>Loud speech barely audible</td>
</tr>
<tr>
<td>50</td>
<td>Shouting barely audible</td>
</tr>
<tr>
<td>55</td>
<td>Shouting not audible</td>
</tr>
</tbody>
</table>

Another widely accepted equivalent term is the Weighted Sound Reduction Index or Rw (ISO 717: Part 1: 1996 or BS 5821: Part 1: 1984). It is determined in a similar manner but instead of TL values, an equivalent Sound Reduction Index (Rw or Rw'), is used.

Note should be taken that results obtained in STC and Rw may have a ±3dB deviation from one another.

Most building structures are not built like laboratories and it is very common that the sound insulation rating measured in ideal test conditions will not be achieved in a building. In order to meet the desired level of performance, building designers should therefore carefully consider the compatibility of the selected system with the supporting structure. Note that field performance is typically lower than laboratory performance by approximately 10%.

General Design Considerations

With modern design concepts and technology in building construction, acoustic performance within buildings has become an important element for consideration by building designers. There are many factors involved in establishing an ideal noise level for any particular building space, some of which are as follows:

- To avoid fatigue induced by noise;
- To prevent distraction or disturbance;
- To maintain a good communication and listening environment.

Heavy walls such as concrete have good transmission loss. However, there are some drawbacks which limit their performance. Mass law dictates that a wall will increase its transmission loss by only 5dB for every doubling of mass. Therefore, a single 100mm thick concrete wall of 2300kg/m² density might have an STC 45 rating whereas a 200mm thick concrete wall would only achieve STC 50 for a doubling in mass.

For most owners and builders, a wall of this size and weight is not desirable. Cost may more than double and the decibel-per-dollar achieved is clearly not acceptable. This limitation can be easily overcome by using a lightweight system, i.e. the partition system, where it is more practical to utilise principals such as air cavity, resilient mountings, sound absorbing core materials or a combination of these principals without the large increase in mass required for solid walls.

Following are some common practices that are effective for noise control and room acoustics.

- **Double Studding & Air Cavity**

 With typical dry wall partitions, sound striking at the wall surface is transmitted through the first surface material into the wall cavity. It then strikes the opposite wall surface, causing it to vibrate and transmit the sound into the air of the adjoining room. This is termed airborne sound. When the sound strikes the wall at the stud, sound is transmitted directly through the stud and is termed structure borne sound.

 The principal of double studding basically means separation of two panels of a drywall partition into a double-leaf wall, integrated with appropriate air spacing (cavity) between the leaves. The introduction of an air-space provides some form of separation or discontinuity between the two wall faces in a double-leaves wall.

 As an example, a double stud partition creating an air cavity eliminates direct mechanical connection between the surfaces. The sound transmission is reduced by breaking the sound path. In addition, the air cavity provides vibration isolation between the two sides. Sound in one room striking the one side of the wall causes it to vibrate but because of the mechanical separation and the cushioning effect of the cavity, the vibration of the other side is greatly reduced.

- **Sound Absorbing Core Material**

 Sound absorption is the effectiveness of a material at preventing the reflection of sound. Generally, the more sound absorption, the fewer echoes will exist. The sound absorbing core used in the Promat partition designs can be mineral or rock wool, glass wool or polyester, depending upon fire resistance requirements.

 This core will further improve the sound isolation performance of the wall by absorbing sound energy in the cavity before the sound can set the opposite wall surface in motion. They will also provide some damping of the vibrating wall surface.
General Design Considerations

Treatment To Flanking Paths

When working with acoustic systems, it is critical that strict attention be paid to construction and detailing. The acoustic integrity of a system can be influenced by the combination of elements that make up the system. Single leaf and uninsulated systems are particularly dependent on high quality of installation. For example, if there is a gap of 5mm wide around the perimeter of an STC 45 rated wall of 3m x 3m, the actual performance would degrade to about STC 30. Therefore, to make acoustically rated partitions effective, they must be airtight. Any path for air also means there is a path for sound. In order to achieve the designed STC rating closely, the following factors must also be taken into account:

- Sound paths, e.g. windows, doors, floors and ceilings;
- Penetrations through walls, even above ceilings or below floorings, must be sealed;
- Stagger the joints between multiple layers of wall boards or ceiling linings;
- Do not install electrical points back to back on either side of a wall;
- Openings for return air in ceiling plenum systems must be strictly controlled.

Wall & Floor Intersections

A good acoustic partition is only as good as its joint or intersection at wall and floor, like a chain and its weakest link. If this joint or intersection is not treated properly, the acoustic value may be lost. Many joint defects from flanking paths allow sound to travel via air gaps through the structure.

Acoustic sealants are the simplest means to provide a permanent air tight seal. They are made from materials that are permanently elastic which will allow floor or wall materials to move, as they are prone to do because of expansion and contraction or outside forces such as structural movement. A permanent airtight seal is the most effective way to maintain the acoustic integrity of the wall. Regardless of which system is employed, all openings, cracks and material joints should be made air tight with a permanently elastic acoustical sealant.

System Selection Guide

As sound insulation requirements may vary from country to country, the table below suggests acoustic values for some typical partition installations, unless otherwise specified by the architects. Please consult Promat for more information.

<table>
<thead>
<tr>
<th>STC rating</th>
<th>Minimum</th>
<th>Average</th>
<th>Luxury</th>
</tr>
</thead>
<tbody>
<tr>
<td>45dB</td>
<td>50dB</td>
<td>55dB</td>
<td>Bedroom to bedroom</td>
</tr>
<tr>
<td>50dB</td>
<td>55dB</td>
<td>60dB</td>
<td>Bedroom to living room</td>
</tr>
<tr>
<td>50dB</td>
<td>55dB</td>
<td>60dB</td>
<td>Bedroom to lobby</td>
</tr>
<tr>
<td>45dB</td>
<td>50dB</td>
<td>55dB</td>
<td>Office to office</td>
</tr>
<tr>
<td>40dB</td>
<td>45dB</td>
<td>50dB</td>
<td>Office to general area</td>
</tr>
<tr>
<td>45dB</td>
<td>50dB</td>
<td>55dB</td>
<td>Office to conference room</td>
</tr>
<tr>
<td>45dB</td>
<td>50dB</td>
<td>55dB</td>
<td>Office to washroom</td>
</tr>
<tr>
<td>40dB</td>
<td>45dB</td>
<td>50dB</td>
<td>Conference room to general area</td>
</tr>
<tr>
<td>40dB</td>
<td>45dB</td>
<td>50dB</td>
<td>Conference room to conference room</td>
</tr>
<tr>
<td>45dB</td>
<td>–</td>
<td>–</td>
<td>Classroom to classroom</td>
</tr>
<tr>
<td>55dB</td>
<td>–</td>
<td>–</td>
<td>Classroom to shop</td>
</tr>
<tr>
<td>45dB</td>
<td>–</td>
<td>–</td>
<td>Classroom to recreation area</td>
</tr>
<tr>
<td>60dB</td>
<td>–</td>
<td>–</td>
<td>Classroom to music room</td>
</tr>
</tbody>
</table>
1. PROMATECT® or PROMINA® board
2. Steel stud at 610mm centres
3. Floor track
4. 40mm long M6 expansion bolts at 500mm centres
5. Set corner with tape and jointing compound
6. Boxed stud at wall intersection
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
PROMATECT® or PROMINA® board
2 Steel stud at 610mm centres
3a Top track with leg length minimum 35mm to act as deflection head to accommodate vertical movement
3b Extruded aluminium track for 64, 76 or 92mm studs
4 Concealed ceiling framing
5 Fix top track to channel at maximum 610mm centres to ceiling framing
6 No. 6 drywall screws at nominal 200mm centres
7 Clearance minimum 8mm (for 3000mm high partition) to allow for expansion under fire conditions
8 Tape or cornice finishing based on requirement for aesthetic appearance
9 Apply sealant, e.g. PROMASEAL® AN Sealant, above track and fix wall track to ceiling framing
10 Finishing bead to protect board edge from damage due to construction of ceiling and fixing of accessories such as lighting, etc
10a (Optional) Allow minimum 8mm clearance to accommodate adjustment. Fixing should start at minimum 100mm from corner edge to prevent unnecessary breakage

NOTE: Additional 100mm wide cover fillets/strips are required behind horizontal joints in boards to maintain surface flatness as well as integrity of the partition system

NOTE: This method of construction is not recommended for studs adjacent to windows or doors or studs carrying loads > 0.25kPa

NOTE: Additional 100mm wide cover fillets/strips are required behind horizontal joints in boards to maintain surface flatness as well as integrity of the partition system.
1. PROMATECT® or PROMINA® board
2. Steel stud at 610mm centres
3. Top track with minimum leg length 35mm is fixed in place by anchor bolts. Depth of track dependant upon performance requirement and partition height
4. Anchor bolts with minimum 40mm penetration to concrete substrate at maximum 500mm centres
5. No. 6 drywall screws at nominal 200mm centres
6. Minimum 6 - 8mm clearance at wall head to allow vertical expansion of steel studs
7. Allow maximum 5mm clearance between board edge and concrete soffit to accommodate structural movement, if any gap is to be sealed with PROMASEAL®-A Acrylic Sealant
8. PROMASEAL®-A Acrylic Sealant to fill gap and act as an isolator to limit sound transmission in acoustical wall construction
9. Corner finishing, e.g. tape, cornice, angle etc. dependant upon requirement of aesthetic appearance

1. PROMATECT® or PROMINA® board
2. Steel stud at 610mm centres
3. Anchor bolts with minimum 40mm penetration into concrete substrate at maximum 500mm centres. For acoustic wall installation if concrete surface is uneven, apply a bead of PROMASEAL®-A Acrylic Sealant between the top track and concrete substrate to seal possible gaps
4. Fixing start 100mm from corner edge to avoid possible breakage under structural movement. NOTE: Should be taken that screw fixing does not fix through the track
5. Minimum 6 - 8mm clearance at wall head to allow vertical expansion of steel studs
6. Allow maximum 5mm clearance between board edge and concrete soffit to accommodate structural movement, if any gap is to be sealed with PROMASEAL®-A Acrylic Sealant
7. PROMASEAL®-A Acrylic Sealant to fill gap and act as an isolator to limit sound transmission in acoustical wall construction
8. Corner finishing, e.g. tape, cornice, angle etc. dependant upon requirement of aesthetic appearance
General Installation Details of Steel Stud Partitions

Deflection Head

1. Promatect® or Promina® board
2. Use of anchor bolts at maximum 500mm centres to secure continuous angles to concrete soffit
3. No. 6 drywall screws at nominal 200mm centres, length dependent upon board thickness
4. Minimum 12mm thick Promatect® or Promina® board runs over wall continuously and fixed to soffit. Joints should be backed by strips of 100mm wide Promatect® or Promina® board of similar thickness
5. Finishing head to protect board edge from damage due to ceiling construction and fixing of accessories such as lighting etc
6. Exposed grid framing system. NOTE: Due to large number of joints in ceiling construction, not recommended where high performance acoustic rating required
7. Ceiling panel screw fixed to wall track to secure in position
8. Minimum 50mm thick glass wool or equivalent sound absorbing material held in place with track or angle, should be continuous to minimize sound leakage
9. Bead of Promaseal®-A Acrylic Sealant isolator between top track and ceiling panel to reduce conduction of sound frequencies
10. Tape or cornice finishing based upon requirement of aesthetic appearance

Wall/ceiling junction

1. Promatect® or Promina® board
2. Steel stud at 610mm centres
3. Top track with minimum 35mm leg length fixed to concrete soffit using anchor bolts with minimum 40mm penetration to concrete substrate maximum spacing 500mm centres
4. Fixing point is minimum 100mm from corner edge of board to avoid unnecessary damage due to structure movement. Use No. 6 drywall screws
5. Set corner with tape and set or cornice finish
6. Ceiling framing, suspended from concrete soffit
7. Perimeter angle fixed to steel studs of partition wall to receive ceiling panels
8. Finishing bead to protect board edge from damage and for aesthetic appearance
9. Anchor bolts fixed to concrete substrate at maximum 500mm centres. For acoustic wall installation if concrete surface is uneven, apply a bead of Promaseal®-A Acrylic Sealant between the top track and concrete substrate to seal possible gap
1. PROMATECT® or PROMINA® board
2. Bottom track
3. 40mm long M6 expansion anchors at 500mm centres

4. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve stated fire and/or acoustic performance
5. Continuous bead of PROMASEAL®-A Acrylic Sealant for acoustic integrity

1. PROMATECT® or PROMINA® board
2. Steel studs at maximum 610mm centres
3. Fixing point is minimum 100mm from corner edge of board to avoid unnecessary damage due to structural movement. Use No. 6 drywall screws
4. PROMASEAL®-A Acrylic Sealant
5. Backing rod
6. RONDO P35 or equivalent control joint profile
7. Finish surface as per external angles
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
9. Perforated locating wing
Boxed studs either side of openings, the studs need to be fixed rigidly top and bottom

Horizontal noggings

Stud track

Expansion bolt at 600mm centres

No.8 wafer head screws 16mm long or 3mm steel pop rivets

Installation of door jamb details (with timber reinforcement)

Installation of door jamb details (with boxed steel stud)

1 PROMATECT® or PROMINA® board
2 Timber architrave
3 Timber door jamb
4 Timber studs as reinforcement
5 Steel stud
6 Steel stud boxed
7 Screw fixing (normal 300mm centres)
8 Screw fixing (normal 500mm centres)
9 Screw fixing (normal 200mm centres)
10 Edge metal profile
Planned and unplanned loads

PROMATECT® and PROMINA® drywalls facilitate easy fixing of most type of loads or fixtures which can be attached either pre or post installation of the PROMATECT® and PROMINA® drywall system. The basic concept is that the support or special fixers/fasteners to be used will also employ the support of the framework of the drywall system. A wide range of propriety expanding fasteners are readily available to fix any load onto a PROMATECT® and PROMINA® wall or partition system. Use fastners in accordance with the manufacturer’s recommendations.

Details for planned and unplanned loads on PROMATECT® and PROMINA® drywalls.

Positioning fixtures and accessories

Most types of wall hangings such as wash basins, kitchen cabinets and shelving etc can easily be installed to PROMATECT® and PROMINA® walls or partition systems.

Typical technical details include the following:

• Planned loads up to 25kg (e.g. cabinets and wash basins) can be easily added by fixing horizontal noggins made of timber members at the desired location and securing to the steel stud frame.
• Unplanned loads up to 5kg (e.g. hanging picture frames, for example) can be added by inserting the screw or cavity fixture inclined downward at the appropriate angle, as shown above.
• For planned loads up to 25kg, horizontal noggins can be fixed to the surface of the board via two additional studs and fixing the load to the strengthening horizontal noggin.
• Fittings and fixtures such as lights and switches are easily fixed to PROMATECT® and PROMINA® drywalls. Please refer to page 19 for the recommendations.
• The fitting of toilet fixtures within PROMATECT® and PROMINA® wall or partition systems are fully outlined in the recommendations on page 16.
PROMATECT® or PROMINA® board with thickness dependant upon performance requirement

Steel studs, spaced at maximum 610mm centres. Studs size dependant upon performance requirement and partition height

Top and bottom tracks fixed to concrete substrate using anchor bolts at maximum 500mm centres. For top track, use track with minimum 35mm leg length to accommodate vertical movement of structure

PROMASEAL®-A Acrylic Sealant is used to fill gap and seal joints whenever necessary to maintain integrity of wall system

Decorative lining onto PROMATECT® or PROMINA® board
NOTE: Installation procedures of decorative lining should be strictly in accordance with the recommendation of manufacturer/supplier

Insitu internal membrane applied to face of wall lining to prevent moisture related problems

Mortar bed prepared according to manufacturer specification to receive floor finishing e.g. tiles, etc

Approved flashing when required by building regulation to prevent water egress

Reinforcement material, e.g. timber plate, etc. of minimum 9mm thick to support loading

Waste pipe made of PVC, uPVC etc. protected by PROMASEAL® FC or FCS retrofit collar to maintain compartmentation during fire conditions. For option of collars please consult Promat

Plastic pipe, e.g. uPVC or PVC connection to main waste pipe protected with PROMASEAL® FCW wall collar for fire resistance application

No. 6 drywall screws fixed at maximum 200mm centres length depends upon board thickness used
Bath tub installation

NOTE: Water tightness is responsibility of other parties

1. PROMATECT® or PROMINA® board with thickness dependant upon performance requirement
2. Decorative lining, e.g. ceramic or stone tiles
3. Use adhesive to install decorative lining. Type of adhesive and application should strictly follow manufacturers recommendations
4. Use of flashing tape to prevent water ingress
5. Bath tub specified by architect or designer. Installation to be carried out according to manufacturer specification
6. Supporting battern fixed to wall framing using appropriate screw fixing to secure bath tub in position
7. Bottom track
8. PROMASEAL®-A Acrylic Sealant
9. Maximum 6mm gap is allow to accommodate fixing of bath tub. Any gap thereafter should be properly sealed with appropriate flexible sealant
10. Anchor bolts bolts at maximum 500mm centres
1. **PROMATECT®** or **PROMINA®** board with thickness dependant upon performance requirement
2. Decorative lining, e.g. ceramic or stone tiles
3. a. Timber reinforcement
 b. Timber block fixed between steel studs acting as reinforcement to support loading from basin fixture
4. a. Typical shower head (with/without handle) as specified by architect or designer
 b. Knob to control water inlet. This is specified by architect or designer
 c. Basin as specified by architect or designer
5. Water waste pipe, e.g. uPVC, etc. connecting to main sewage system
6. For fire protection application; **PROMASEAL® FCW** wall collar can be used to prevent fire spread through opening or gap. In cases where waste pipe penetrates floor slab, **PROMASEAL® FC** or **FCS retrofit collar** system may be used instead. For other option please consult Promat
7. **PromaSnap®** floor waste collar
8. Bottom track
9. Anchor bolt to concrete substrate
10. **PROMASEAL®-A** Acrylic Sealant
Typical framing details for water tap support and penetrations

1. PROMATECT® or PROMINA® board with thickness dependant upon performance requirement
2. Timber supporting battern
3. Steel stud
4. PROMASEAL® AN Sealant for copper and steel pipes. Use PROMASEAL® Intumescent pipe collars for plastic pipes greater than 25mm in diameter
5. uPVC or PVC or copper or steel pipework
6. Ceramic tiles
PROMATECT® or PROMINA® board with thickness dependant upon performance requirement

Insulation material enhances thermal insulation of building

Steel studs at maximum 610mm centres. Stud size dependant upon performance requirement and partition height

Fire resistance switchbox based upon performance. Please consult Promat

NOTE: Weather tight sealing and structural design under the responsibility of other parties. Please consult Promat

NOTE: For fire resistant walls, steel electrical switch boxes should be employed to avoid degrading fire performance of the wall system

1. PROMATECT® or PROMINA® board with thickness dependant upon performance requirement
2. Insulation material enhances thermal insulation of building
3. Steel studs at maximum 610mm centres. Stud size dependant upon performance requirement and partition height
4. Fire resistance switchbox based upon performance. Please consult Promat
5. PROMASEAL® Switchbox intumescent infill
6. PROMASEAL®-A Acrylic Sealant is used to seal gap to maintain integrity of partition system
7. PROMASEAL® Expansion Joint Strip
<table>
<thead>
<tr>
<th>Steel stud partition type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>Rw</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total partition thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT®-H single steel stud partition (single sided)</td>
<td>-/240/-</td>
<td>27dB</td>
<td>27dB</td>
<td>1 x 9mm * From 11.58kg/m²</td>
<td>From 68mm</td>
<td>BRE CC91456 and WF 159773 to the requirements of BS 476: Part 22: 1987</td>
<td>26, 27</td>
<td></td>
</tr>
<tr>
<td>PROMATECT®-H single steel stud partition (double sided single layer)</td>
<td>-/60/60</td>
<td>36dB</td>
<td>40dB</td>
<td>1 x 9mm (each side) * From 30.25kg/m²</td>
<td>From 86mm</td>
<td>WF 177939, WARRES 38435, WRCSI 23478 and PSB 54S053839/A/MW to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>29, 30</td>
<td></td>
</tr>
<tr>
<td>PROMATECT®-H single steel stud partition (double sided double layer)</td>
<td>-/240/120</td>
<td>38dB</td>
<td>40dB</td>
<td>1 x 9mm (each side) * From 31.91kg/m²</td>
<td>From 86mm</td>
<td>WF 164275 and EWA 23730-01 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>31, 32</td>
<td></td>
</tr>
<tr>
<td>PROMATECT®-H single steel stud partition (double sided double layer)</td>
<td>-/360/360</td>
<td>56dB</td>
<td>57dB</td>
<td>2 x 12mm (each side) * From 67.11kg/m²</td>
<td>From 148mm</td>
<td>LPC TE6371A to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For partitions up to 3000mm. Stud sizes may increase for partitions above 3000mm of height. Please consult Promat.
<table>
<thead>
<tr>
<th>Steel stud partition type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>R_ω</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total partition thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT® 100 single steel stud partition (double sided)</td>
<td>-/120/120</td>
<td>Up to 48dB</td>
<td>Up to 50dB</td>
<td>1 x 20mm (each side)</td>
<td>* From 35kg/m²</td>
<td>From 104mm</td>
<td>WFRA 41088 and WFA 45883 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>45-50</td>
</tr>
<tr>
<td>PROMATECT® 100 double steel stud partition (double sided)</td>
<td>-/120/120</td>
<td>Up to 57dB</td>
<td>Up to 60dB</td>
<td>1 x 20mm (each side)</td>
<td>* From 36kg/m²</td>
<td>From 178mm</td>
<td>WFRA 41088 to the requirements of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005</td>
<td>53, 54</td>
</tr>
<tr>
<td>PROMINA® 60 single steel stud partition (single sided)</td>
<td>-/60/60</td>
<td>27dB</td>
<td>27dB</td>
<td>1 x 9mm</td>
<td>* From 11.58kg/m²</td>
<td>From 68mm</td>
<td>WF 124106 and RED I3L18 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>56, 57</td>
</tr>
<tr>
<td>PROMINA® 60 single steel stud partition (double sided)</td>
<td>-/120/60</td>
<td>38dB</td>
<td>41dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 20.68kg/m²</td>
<td>From 86mm</td>
<td>WARRES 58347 and BRE CC 96481 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>59, 60</td>
</tr>
<tr>
<td>PROMINA® 60 single steel stud partition with gypsum plaster (double sided)</td>
<td>-/120/120</td>
<td>46dB</td>
<td>45dB</td>
<td>1 x 9mm + 1 x 15mm of gypsum plaster (each side)</td>
<td>* From 25.80kg/m²</td>
<td>From 113mm</td>
<td>PSB G41751/TSM and BRE CC 89767B to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>62, 63</td>
</tr>
</tbody>
</table>

* For partitions up to 3000mm. Stud sizes may increase for partitions above 3000mm of height. Please consult Promat.
Steel stud partition type
<table>
<thead>
<tr>
<th>Fire resistance performance</th>
<th>STC</th>
<th>R_w</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total partition thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMINA®-HD</td>
<td>-/60/60</td>
<td>43dB</td>
<td>1 x 6mm + 1 x 12.5mm of gypsum plaster (each side)</td>
<td>* From 20.57kg/m²</td>
<td>From 87mm</td>
<td>BFTC 00/02 and WF 190932 to the requirements of BS 476: Part 22: 1987</td>
<td>65, 66</td>
</tr>
</tbody>
</table>

| PROMATECT®-S (single sided) | -120/- | 29dB | 1 x 6mm | * From 23.89kg/m² | From 106mm | BRE CC 246885 and LPC TE83651 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005 | 68, 69 |

| PROMATECT®-S (double sided) | -/240/240 | 53dB | 1 x 9.5mm (each side) | * From 95.72kg/m² | From 138mm | BRE CC 201034, BFTC 97/17 and/or LPC TE 92170 to the requirements of BS 476: Part 22: 1987 with impact resistance to the requirements of EN 1363: Part 2: 1999 | 70-72 |

Timber stud partition type
<table>
<thead>
<tr>
<th>Fire resistance performance</th>
<th>STC</th>
<th>R_w</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total partition thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT®-H</td>
<td>-/30/30</td>
<td>36dB</td>
<td>1 x 6mm (each side)</td>
<td>* From 20.95kg/m²</td>
<td>From 75mm</td>
<td>WFRA 45713 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>75, 76</td>
</tr>
</tbody>
</table>

| PROMATECT® 100 | -/120/120 | Up to 35dB | 1 x 20mm (each side) | * From 37kg/m² | From 130mm | BRE CC 232158A and BRE CC 232158B to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005 | 78-80 |

* For partitions up to 3000mm. Stud sizes may increase for partitions above 3000mm of height. Please consult Promat.
<table>
<thead>
<tr>
<th>Solid/Frameless internal partition type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total partition thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT®-H solid/frameless internal partition</td>
<td>-/60/60</td>
<td>35dB</td>
<td>1 x 15mm + 1 x 20mm</td>
<td>* From 37.18kg/m²</td>
<td>From 35mm</td>
<td>BRE CC 86480A to the requirements of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005</td>
<td>83-86</td>
</tr>
<tr>
<td></td>
<td>-/120/120</td>
<td>36dB</td>
<td>3 x 12mm + 4 x 9mm</td>
<td>* From 37.85kg/m²</td>
<td>From 36mm</td>
<td>BRE CC 224953 and BRE CC 81584A to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td></td>
</tr>
<tr>
<td>PROMATECT® 100 solid/frameless internal partition</td>
<td>-/120/120</td>
<td>Up to 36dB</td>
<td>2 x 25mm</td>
<td>* From 52.52kg/m²</td>
<td>From 50mm</td>
<td>BRE CC 232158A and BRE CC 232158B to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>94, 95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shaft wall type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total wall thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMINA® 60 shaft wall</td>
<td>-/60/60</td>
<td>40dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 37.12kg/m²</td>
<td>From 165mm</td>
<td>BFTC 01/73A and WF 167483 to the requirements of BS 476: Part 22: 1987</td>
<td>100-102</td>
</tr>
<tr>
<td>-/120/120</td>
<td>40dB</td>
<td>42dB</td>
<td>* From 47.77kg/m²</td>
<td>From 174mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For partitions/walls up to 3000mm. Stud sizes may increase for partitions/walls above 3000mm of height. Please consult Promat.
Conversion of external to internal wall type

<table>
<thead>
<tr>
<th>Conversion of external to internal wall type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>R_w</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total wall thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT®-H conversion of external to internal wall</td>
<td>-/30/30</td>
<td>37dB</td>
<td>37dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 23.72kg/m²</td>
<td>From 238mm</td>
<td>WARRES 38396 and BRE CC 231705 to the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005</td>
<td>104, 105</td>
</tr>
<tr>
<td></td>
<td>-/60/60</td>
<td>37dB</td>
<td>37dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 25.56kg/m²</td>
<td>From 238mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-/120/120</td>
<td>37dB</td>
<td>37dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 31.22kg/m²</td>
<td>From 238mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External wall type

<table>
<thead>
<tr>
<th>External wall type</th>
<th>Fire resistance performance</th>
<th>STC</th>
<th>R_w</th>
<th>Board layer and thickness</th>
<th>Typical system weight</th>
<th>Total wall thickness</th>
<th>Test/Approval no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMATECT®-H external wall (single sided protection)</td>
<td>-/240/15</td>
<td>From 40dB</td>
<td>From 39dB</td>
<td>1 x 9mm</td>
<td>* From 13.43kg/m²</td>
<td>From 215mm</td>
<td>BRE CC 231704 to the requirements of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005</td>
<td>107, 108</td>
</tr>
<tr>
<td></td>
<td>-/30/30</td>
<td>38dB</td>
<td>38dB</td>
<td>1 x 9mm</td>
<td>From 23.72kg/m²</td>
<td>From 250mm</td>
<td>BRE CC 231705 to the requirements of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005</td>
<td>110, 111</td>
</tr>
<tr>
<td></td>
<td>-/60/60</td>
<td>47dB</td>
<td>46dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 25.56kg/m²</td>
<td>From 242mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-/120/120</td>
<td>48dB</td>
<td>47dB</td>
<td>1 x 9mm (each side)</td>
<td>* From 29.22kg/m²</td>
<td>From 242mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROMINA® 60 external wall (single sided protection)</td>
<td>-/240/15</td>
<td>39dB</td>
<td>39dB</td>
<td>1 x 9mm (each side)</td>
<td>14.78kg/m²</td>
<td>Depends upon purlin dimension</td>
<td>LPC TE 83997 to the requirements of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005</td>
<td>113, 114</td>
</tr>
</tbody>
</table>

* For walls up to 3000mm. Stud sizes may increase for walls above 3000mm of height. Please consult Promat.
One layer of PROMATECT®-H board 9mm thick at one side of wall for heights up to 6000mm or two layers of PROMATECT®-H board 9mm thick each for heights up to 12000mm. If using two layer system, stagger all joints minimum 610mm.

- Galvanised steel studs, measurements in accordance with Studs Tables 1 & 2 below, vertical studs at maximum 610mm centres (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
- 40mm long M6 masonry anchors at nominal 500mm centres
- Caulk all perimeter gaps with PROMASEAL® AN Fire Resistant Acrylic Sealant to achieve stated fire and/or acoustic performance
- 25mm long self-tapping screws at nominal 200mm centres for first layer board, and 35mm long self-tapping screws at nominal 200mm centres for second layer board

Studs Table 1: Single layer for heights up to 5000mm – Partitions lined with one layer of 9mm thick PROMATECT®-H using studs at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>59mm</td>
<td>52mm x 35mm x 0.6mm</td>
<td>20mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>0.9mm</td>
<td>59mm</td>
<td>52mm x 45mm x 1.0mm</td>
<td>25mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>59mm</td>
<td>52mm x 50mm x 1.0mm</td>
<td>30mm</td>
</tr>
</tbody>
</table>

9mm thick PROMATECT®-H boards will be screw fixed to the frame with 25mm self-tapping screws at 200mm nominal centres.

Studs Table 2: Double layer for heights up to 12000mm – Partitions lined with two layers of 9mm thick PROMATECT®-H using studs at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Stud flange</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>38mm</td>
<td>0.6mm</td>
<td>68mm</td>
<td>52mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>52mm x 45mm x 1.2mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>67mm x 55mm x 1.2mm</td>
<td>36mm</td>
</tr>
</tbody>
</table>

9mm thick PROMATECT®-H boards will be screw fixed to the frame with self-tapping screws at nominal 200mm centres, 25mm long for first layer board and 35mm long for second layer.
1. One layer of PROMATECT®-H board 9mm thick at one side of wall for heights up to 6000mm or two layers of PROMATECT®-H board 9mm thick each for heights up to 12000mm. If using two layer system, stagger all joints minimum 610mm

2. Galvanised steel studs, measurements in accordance with Studs Tables 1–2 on page 26, vertical studs at maximum 610mm centres (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)

3. 40mm long M6 masonry anchors at nominal 500mm centres

4. Caulk all perimeter gaps with PROMASEAL® AN Fire Resistant Acrylic Sealant to achieve stated fire and/or acoustic performance

5. 25mm long self-tapping screws at nominal 200mm centres for first layer board, and 35mm long self-tapping screws at nominal 200mm centres for second layer board

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Board Side / Non Loadbearing
Up to 240 minutes fire resistance, integrity only in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of $R_w)$ 27.

Supporting Structure
Care should be taken that any structural element to which the partition system is affixed, e.g. structural steel or concrete/brick wall, has a fire resistance equal to or greater than 240 minutes.

Lining Boards
Single layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing sections. Standard board dimension 1220mm x 2440mm x 9mm thick.

Double layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm at both layers. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing
Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 500mm centres. Vertical steel studs are then friction fitted into the tracks at 610mm maximum centres for boards to be installed vertically or horizontally.

Studs Table 1: Single layer for heights up to 5000mm
Partitions lined with one layer of 9mm thick PROMATECT®-H using studs at 610mm centres.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>59mm</td>
<td>52mm x 35mm x 0.6mm</td>
<td>20mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>0.9mm</td>
<td>59mm</td>
<td>52mm x 45mm x 1.0mm</td>
<td>25mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>59mm</td>
<td>52mm x 50mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>59mm</td>
<td>52mm x 55mm x 1.0mm</td>
<td>35mm</td>
</tr>
</tbody>
</table>

9mm thick PROMATECT®-H boards will be screw fixed to the frame with 25mm self-tapping screws at 200mm nominal centres.

Studs Table 2: Double layer for heights up to 12000mm
Partitions lined with two layers of 9mm thick PROMATECT®-H using studs at 610mm centres.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Stud flange</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>38mm</td>
<td>0.6mm</td>
<td>68mm</td>
<td>52mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>52mm x 45mm x 1.2mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>67mm x 55mm x 1.2mm</td>
<td>36mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>83mm</td>
<td>65mm x 60mm x 2.0mm</td>
<td>42mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>75mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>93mm</td>
<td>75mm x 70mm x 2.5mm</td>
<td>48mm</td>
</tr>
<tr>
<td>10000mm</td>
<td>100mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>118mm</td>
<td>100mm x 85mm x 2.5mm</td>
<td>60mm</td>
</tr>
<tr>
<td>11000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 2.0mm</td>
<td>66mm</td>
</tr>
<tr>
<td>12000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>3.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 3.0mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

9mm thick PROMATECT®-H boards will be screw fixed to the frame with self-tapping screws at nominal 200mm centres, 25mm long for first layer board and 35mm long for second layer.

Tests & Standards
The complete system along with the material and framing and approval for a performance is tested in accordance with the relevant criteria of BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5.

Jointing
Plain butt joints between machined edges of boards. (1)
Joints filled in preparation for painting. (2)
Joints filled and taped in preparation for decoration. (3)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling(4) in accordance with manufacturer’s recommendations.

NOTES:
• (1), (2), (3), (4) delete as appropriate.
• All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
1. 9mm thick PROMATECT®-H board at each side of the partition
2. 100mm x 9mm thick PROMATECT®-H cover strips, fixed to steel studs using 25mm long self-tapping screws at nominal 500mm centres
3. Mineral wool infill to cavity between boards (see page 30 for different fire resistance requirements)
4. Galvanised steel studs, measurements in accordance with Studs Tables 1-2 on pages 33 and 34 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 32mm long self-tapping screws at nominal 200mm centres
6. 40mm long M6 masonry anchors at nominal 500mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
1. 9mm thick PROMATECT®-H board at each side of the partition
2. 100mm x 9mm thick PROMATECT®-H cover strips, fixed to steel studs using 25mm long self-tapping screws at nominal 500mm centres
3. Mineral wool:
 - One layer of 50mm x 60kg/m³, 60mm x 40kg/m³ or 80mm x 30kg/m³ mineral wool for up to 60/60 fire resistance
 - One layer of 50mm x 150kg/m³ or 75mm x 100kg/m³ for up to 120/120 fire resistance
 - One layer of 75mm x 100kg/m³ or 2 layers of 40mm + 30mm x 100kg/m³ for up to 240/120 fire resistance
4. Galvanized steel studs, measurements in accordance with Studs Tables 1–2 on page 33 and 34 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 32mm long self-tapping screws at nominal 200mm centres
6. 40mm long M6 masonry anchors at nominal 500mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
Fire Resistance

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-:240/240</td>
<td>9mm</td>
</tr>
<tr>
<td>-:360/360</td>
<td>12mm</td>
</tr>
</tbody>
</table>

Acoustic

- **STC**: 56dB (:240/240) 56dB (:360/360)
- **Rw**: 55dB (:240/240) 57dB (:360/360)

Construction

1. Two layers of PROMATECT®-H at both sides of steel studs, all joints should be staggered minimum 610mm in both directions, thickness refer to table below

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-:240/240</td>
<td>9mm</td>
</tr>
<tr>
<td>-:360/360</td>
<td>12mm</td>
</tr>
</tbody>
</table>

2. Galvanised steel studs, measurements in accordance with Studs Tables 1–2 on page 33 and 34 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes), refer to table below for the distance between stud

3. Mineral wool infill to cavity between boards (see page 32 for different fire resistance requirements)

4. 25mm long self-tapping screws at nominal 300mm centres for first layer board and 38mm self-tapping screws at nominal 300mm centres for second layer board. Joints do need not to coincide with studs, joints in second layer not coinciding with studs stitched to first layer using 25mm long laminating screws at nominal 300mm centres

5. 60mm long M6 masonry anchors at nominal 500mm centres

6. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

*Details for walls above 3000mm high are available on request
Two layers of PROMATECT®-H at both sides of steel studs, all joints should be staggered minimum 610mm in both directions, thickness refer to table below.

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
<th>Mineral wool density x thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/240/240</td>
<td>9mm</td>
<td>100mm x 100kg/m³ or Two layers of 50mm x 100kg/m³</td>
</tr>
<tr>
<td>-/360/360</td>
<td>12mm</td>
<td>50mm x 110kg/m³</td>
</tr>
</tbody>
</table>

Two layers of mineral wool, with the slab joints staggered minimum 300mm between layers in both directions. When the web dimension of the studs is increased, the thickness of the mineral wool must be similarly increased to fill the cavity. Alternatively, mineral wool of minimum 125mm x 80kg/m³ thick or minimum 150mm x 70kg/m³ thick may be used, refer to table above.

Galvanised steel studs, measurements in accordance with Studs Tables 1–2 on page 33 and 34 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes), refer to table below for the distance between stud.

25mm long self-tapping screws at nominal 300mm centres for first layer board and 38mm long self-tapping screws at nominal 300mm centres for second layer board. Joints do need not to coincide with studs, joints in second layer not coinciding with studs stitched to first layer using 25mm long laminating screws at nominal 300mm centres.

Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance.

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Both Sides / Non Loadbearing

Up to ________ minute\(^1\) fire resistance, integrity and ________ minute\(^2\) insulation in accordance with the criteria of BS 476: Part 22: 1987 and/or AS1530: Part 4: 2005\(^3\).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of \(R_w\) ________\(^6\).

Supporting Structure

Care should be taken to ensure that any structural element by which the partition system is supported, e.g. concrete/brick wall, has a fire resistance equal to or greater than ________ minutes\(^1\).

Lining Boards

For 60 and 120 minutes of fire resistance, single layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd.

For 240 minutes of fire resistance, two layers of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd.

For 360 minutes of fire resistance, two layers of 12mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd.

Standard board dimension 1220mm x 2440mm x 9mm or 12mm\(^3\) thick.

Fixing

Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 60mm long M6 masonry anchors at 500mm centres. Vertical steel studs are then friction fitted into the tracks at 610mm or 900mm maximum centres for boards to be installed vertically or horizontally.

Adequate clearance for vertical expansion will be allowed at the ceiling or top track. No clearance is necessary at the bottom track. See the following tables for steel size and clearance at top track for given partition height.

Studs Table 1

Up to -/60/60 or -/120/120 fire resistance in accordance with the requirements of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005\(^3\).

<table>
<thead>
<tr>
<th>Galvanised steel stud</th>
<th>Maximum partition height for stud thickness of</th>
<th>0.6mm</th>
<th>0.8mm</th>
<th>1mm</th>
<th>1.2mm</th>
<th>1.5mm</th>
<th>2mm</th>
<th>2.5mm</th>
<th>3mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Flange</td>
<td></td>
<td>38</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0.6mm</td>
<td></td>
<td>3100mm</td>
<td>3200mm</td>
<td>4800mm</td>
<td>5400mm</td>
<td>5900mm</td>
<td>7500mm</td>
<td>8400mm</td>
<td>9000mm</td>
</tr>
<tr>
<td>0.8mm</td>
<td></td>
<td>3400mm</td>
<td>3500mm</td>
<td>4800mm</td>
<td>5900mm</td>
<td>6400mm</td>
<td>7900mm</td>
<td>8400mm</td>
<td>9000mm</td>
</tr>
<tr>
<td>1mm</td>
<td></td>
<td>3700mm</td>
<td>3800mm</td>
<td>5600mm</td>
<td>6400mm</td>
<td>7200mm</td>
<td>8700mm</td>
<td>9500mm</td>
<td>10000mm</td>
</tr>
<tr>
<td>1.2mm</td>
<td></td>
<td>3900mm</td>
<td>4000mm</td>
<td>6000mm</td>
<td>6700mm</td>
<td>7900mm</td>
<td>9500mm</td>
<td>10700mm</td>
<td>11700mm</td>
</tr>
<tr>
<td>1.5mm</td>
<td></td>
<td>4200mm</td>
<td>4300mm</td>
<td>6400mm</td>
<td>7200mm</td>
<td>8400mm</td>
<td>9700mm</td>
<td>11200mm</td>
<td>12000mm</td>
</tr>
<tr>
<td>2mm</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2.5mm</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3mm</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Back to back studs

The dimension of the web of the top and bottom track channels must be the necessary width to match the size of the studs.

Continued on next page
Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005(3). The partition system should meet the requirements as specified under Clause 5.

Joining

Plain butt joints between machined edges of boards. (5)

Joints filled in preparation for painting. (6)

Joints filled and taped in preparation for decoration. (7)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(8) in accordance with manufacturer’s recommendations.

NOTES:

- (1) insert required fire resistance level not exceeding 360 minutes.
- (2) insert required insulation level not exceeding the fire resistance level(1).
- (3) insert acoustic value not exceeding 40dB (for -/60/60 and -/120/120 fire resistance), 43dB (for -/240/120 fire resistance), 55dB (for -/240/240 fire resistance) or 57dB (for -/360/360 and -/240/240 fire resistance).
- (4, 5, 6, 7, 8) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.

Studs Table 2

Double layer 9mm thick PROMATECT®-H board fixed at either side of the stud at 610mm centres.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Proposed measurement of galvanised steel stud, C type</th>
<th>Minimum measurement of galvanised steel track</th>
<th>Expansion allowance at top horizontal track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 50mm x 1.2mm thick</td>
<td>15mm</td>
</tr>
<tr>
<td>3500mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 50mm x 1.2mm thick</td>
<td>17.5mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 50mm x 1.2mm thick</td>
<td>20mm</td>
</tr>
<tr>
<td>4500mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 50mm x 1.2mm thick</td>
<td>22.5mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 60mm x 1.2mm thick</td>
<td>25mm</td>
</tr>
<tr>
<td>5500mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 60mm x 1.2mm thick</td>
<td>27.5mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>100mm x 50mm x 1.2mm thick</td>
<td>102mm x 60mm x 1.2mm thick</td>
<td>30mm</td>
</tr>
<tr>
<td>6500mm</td>
<td>125mm x 50mm x 1.2mm thick</td>
<td>127mm x 75mm x 1.2mm thick</td>
<td>32.5mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>125mm x 50mm x 1.2mm thick</td>
<td>127mm x 75mm x 1.2mm thick</td>
<td>35mm</td>
</tr>
<tr>
<td>7500mm</td>
<td>125mm x 50mm x 20mm x 1.2mm thick (lipped C type)</td>
<td>127mm x 75mm x 1.2mm thick</td>
<td>37.5mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>125mm x 50mm x 20mm x 1.6mm thick (lipped C type)</td>
<td>127mm x 75mm x 1.6mm thick</td>
<td>40mm</td>
</tr>
<tr>
<td>8500mm</td>
<td>150mm x 50mm x 1.6mm thick</td>
<td>152mm x 75mm x 1.6mm thick</td>
<td>42.5mm</td>
</tr>
<tr>
<td>9000mm</td>
<td>150mm x 50mm x 1.6mm thick</td>
<td>152mm x 75mm x 1.6mm thick</td>
<td>45mm</td>
</tr>
<tr>
<td>9500mm</td>
<td>150mm x 50mm x 20mm x 1.6mm thick (lipped C type)</td>
<td>152mm x 75mm x 1.6mm thick</td>
<td>47.5mm</td>
</tr>
<tr>
<td>10000mm</td>
<td>150mm x 50mm x 20mm x 2mm thick (lipped C type)</td>
<td>152mm x 85mm x 2.0mm thick</td>
<td>50mm</td>
</tr>
<tr>
<td>10500mm</td>
<td>2 no. of 150mm x 50mm x 1.6mm thick fixed back to back</td>
<td>152mm x 85mm x 1.6mm thick</td>
<td>52.5mm</td>
</tr>
<tr>
<td>11000mm</td>
<td>2 no. of 150mm x 50mm x 1.6mm thick fixed back to back</td>
<td>152mm x 85mm x 1.6mm thick</td>
<td>55mm</td>
</tr>
<tr>
<td>11500mm</td>
<td>2 no. of 150mm x 50mm x 20mm x 1.6mm thick (lipped C type) fixed back to back</td>
<td>152mm x 90mm x 1.6mm thick</td>
<td>57.5mm</td>
</tr>
<tr>
<td>12000mm</td>
<td>2 no. of 150mm x 50mm x 20mm x 2mm thick (lipped C type) fixed back to back</td>
<td>152mm x 90mm x 2.0mm thick</td>
<td>60mm</td>
</tr>
</tbody>
</table>
One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs

Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)

35mm long self-tapping screws at maximum 700mm centres

40mm long M6 masonry anchors at nominal 600mm centres

Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints

Promat

PROMATECT® 100

Single Steel Stud Partition (Double Sided)

Fire resistance

<table>
<thead>
<tr>
<th>FRL</th>
<th>120/120</th>
</tr>
</thead>
</table>

Standard

- AS1530: Part 4: 2005

Approval

- WFRA 41088
- WFRA 45883

Acoustic

- STC

|-----------|----------------------|

Predicted Assessment

Marshall Day

18th October 2006

Construction

<table>
<thead>
<tr>
<th>MAXIMUM HEIGHT*</th>
<th>3000mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM LENGTH</td>
<td>Unlimited</td>
</tr>
<tr>
<td>PARTITION THICKNESS</td>
<td>From 104mm</td>
</tr>
<tr>
<td>PARTITION MASS*</td>
<td>From 35kg/m²</td>
</tr>
</tbody>
</table>

* Details for walls above 3000mm high are available on request

Acoustic Table

<table>
<thead>
<tr>
<th>Cavity infill</th>
<th>64mm</th>
<th>76mm</th>
<th>92mm</th>
<th>150mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nil</td>
<td>33/39dB (-6)</td>
<td>34/40dB (-5)</td>
<td>36/41dB (-6)</td>
<td>40/44dB (-6)</td>
</tr>
<tr>
<td>b) Glasswool partition batts 50mm x 32kg/m²</td>
<td>48/49dB (-6)</td>
<td>48/49dB (-6)</td>
<td>48/50dB (-5)</td>
<td>48/50dB (-4)</td>
</tr>
<tr>
<td>c) Glasswool partition batts 75mm x 32kg/m²</td>
<td>48/49dB (-6)</td>
<td>48/49dB (-6)</td>
<td>48/50dB (-5)</td>
<td>48/50dB (-4)</td>
</tr>
<tr>
<td>d) ASB3 / TSB3 Polyester batts 60mm x 8kg/m²</td>
<td>48/49dB (-6)</td>
<td>48/49dB (-6)</td>
<td>48/50dB (-6)</td>
<td>48/50dB (-4)</td>
</tr>
<tr>
<td>e) Soundscreen™ R1.6 Battus 60mm</td>
<td>48/49dB (-6)</td>
<td>48/49dB (-6)</td>
<td>48/50dB (-6)</td>
<td>48/50dB (-4)</td>
</tr>
</tbody>
</table>

NOTE: Above values are predicted figures. **# Margin of error is generally within ±3dB**
One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs

Cavity infill if required to improve acoustic or thermal insulation

Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)

35mm long self-tapping screws at maximum 700mm centres

Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs.
2. Cavity infill if required to improve acoustic or thermal insulation.
3. Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes).
4. 35mm long self-tapping screws at maximum 200mm centres.
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance.

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs
2. Cavity infill if required to improve acoustic or thermal insulation
3. Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes), refer to table below for the distance between stud
4. 35mm long self-tapping screws at maximum 200mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs
2. Cavity infill if required to improve acoustic or thermal insulation
3. Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
4. 35mm long self-tapping screws at maximum 200mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
6. 20mm thick PROMATECT® 100 cover strips at horizontal board joint

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs
2. Cavity infill if required to improve acoustic or thermal insulation
3. Galvanised steel studs, measurements in accordance with Studs Tables on pages 51 and 52 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
4. 35mm long self-tapping screws at maximum 200mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
6. Fixing channel 100mm x 10mm x 0.9mm thick

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT® 100. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to 120 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005. Lateral load of up to 0.25kPa.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index up to R_w 50.

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. steel stud or perimeter steel channel, has fire resistance equal to or greater than 120 minutes.

Lining Boards
Single layer on either side of 20mm thick PROMATECT® 100 PromaX® mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing. Standard board dimension 1200mm x 2500mm x 20mm thick.

Fixing
Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 600mm centres. Vertical steel studs are then friction fitted into the tracks at 600mm centres for boards to be installed with long edge vertically and at 625mm centres for boards to be installed with long edge horizontally. Adequate clearance for vertical expansion will be allowed at the ceiling/top track. No clearance is necessary at the bottom track. See table below for steel size and clearance at top track for given partition height.

Horizontal noggings, cut out of the steel track material will be friction fitted between the steel studs to coincide with horizontal joints between boards.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Maximum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>64mm</td>
<td>0.5mm</td>
<td>104mm</td>
<td>64 x 50 x 0.75mm</td>
<td>20mm</td>
</tr>
<tr>
<td>3600mm</td>
<td>64mm</td>
<td>0.75mm</td>
<td>104mm</td>
<td>Special Design*</td>
<td>24mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>64mm</td>
<td>1.15mm</td>
<td>104mm</td>
<td>Special Design*</td>
<td>29mm</td>
</tr>
<tr>
<td>3500mm</td>
<td>76mm</td>
<td>0.55mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>23mm</td>
</tr>
<tr>
<td>4100mm</td>
<td>76mm</td>
<td>0.75mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>28mm</td>
</tr>
<tr>
<td>4850mm</td>
<td>76mm</td>
<td>1.15mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>33mm</td>
</tr>
<tr>
<td>3733mm</td>
<td>92mm</td>
<td>0.55mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>25mm</td>
</tr>
<tr>
<td>4700mm</td>
<td>92mm</td>
<td>0.75mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>32mm</td>
</tr>
<tr>
<td>5600mm</td>
<td>92mm</td>
<td>1.15mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>38mm</td>
</tr>
<tr>
<td>5867mm</td>
<td>150mm</td>
<td>0.75mm</td>
<td>190mm</td>
<td>Special Design*</td>
<td>39mm</td>
</tr>
<tr>
<td>7800mm</td>
<td>150mm</td>
<td>1.15mm</td>
<td>190mm</td>
<td>Special Design*</td>
<td>50mm</td>
</tr>
</tbody>
</table>

*Top tracks are designed or tested in accordance with AS 4600: 1996 for a clearance between stud and top track as shown above. Please consult Promat for further details.

20mm thick PROMATECT® 100 boards will be screw-fixed to the frame with 35mm x No.8 self-tapping screws at maximum 300mm centres.

Tests & Standards
Along with all material tests the complete system along with the framing is tested in accordance with the criteria of BS 476: Part 476: 1987 and/or AS 1530: Part 4: 2005. The partition system should meet the requirements specified in BCA 2006 Specification Clause 1.8 for static, dynamic and indentation load tests as specified under Clauses 3.1, 3.2 and 3.4.

Jointing
Plain butt joints between machined edges of boards. (2) Joints filled in preparation for painting. (3) Joints filled and taped in preparation for decoration. (4)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling in accordance with manufacturer’s recommendations.

NOTES:
• (1), (2), (3), (4), (5) delete as appropriate.
• All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT® 100. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Loadbearing

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index up to $R_w \geq 50$.

Supporting Structure

Care should be taken that any structural element that the partition system is supported from, e.g. steel stud or perimeter steel channel, has a fire resistance equal to or greater than 120 minutes.

Lining Boards

Single layer each side 20mm thick PROMATECT® 100 PromaX® mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing. Standard board dimension 1200mm x 2500mm x 20mm thick.

Fixing

Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 600mm centres. Vertical steel studs are then friction fitted into the tracks at 600mm centres. See table below for stud size according to the load capacity for a given partition height.

Horizontal nogging, cut out of the steel track material will be friction fitted between the steel studs.

Studs Table

Partitions lined with 20mm thick PROMATECT® 100 using studs at 600mm centres, 0.25kPa.

<table>
<thead>
<tr>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Load capacity (kN for given partition height (mm))</th>
<th>Nogging (two rows)</th>
<th>Nogging per 1200mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>64mm</td>
<td>0.5mm</td>
<td>0.40</td>
<td>-</td>
<td>0.48</td>
</tr>
<tr>
<td>64mm</td>
<td>0.75mm</td>
<td>1.58</td>
<td>1.15</td>
<td>0.68</td>
</tr>
<tr>
<td>64mm</td>
<td>1.15mm</td>
<td>3.76</td>
<td>2.69</td>
<td>1.87</td>
</tr>
<tr>
<td>76mm</td>
<td>0.55mm</td>
<td>0.95</td>
<td>0.59</td>
<td>0.31</td>
</tr>
<tr>
<td>76mm</td>
<td>0.75mm</td>
<td>2.20</td>
<td>1.65</td>
<td>1.18</td>
</tr>
<tr>
<td>76mm</td>
<td>1.15mm</td>
<td>5.17</td>
<td>4.02</td>
<td>3.03</td>
</tr>
<tr>
<td>92mm</td>
<td>0.55mm</td>
<td>1.29</td>
<td>0.94</td>
<td>0.62</td>
</tr>
<tr>
<td>92mm</td>
<td>0.75mm</td>
<td>2.79</td>
<td>2.25</td>
<td>1.75</td>
</tr>
<tr>
<td>92mm</td>
<td>1.15mm</td>
<td>6.38</td>
<td>5.26</td>
<td>4.24</td>
</tr>
<tr>
<td>150mm</td>
<td>0.75mm</td>
<td>3.35</td>
<td>2.86</td>
<td>2.61</td>
</tr>
<tr>
<td>150mm</td>
<td>1.15mm</td>
<td>6.61</td>
<td>6.24</td>
<td>5.84</td>
</tr>
</tbody>
</table>

Tests & Standards

Along with all material tests the complete system along with the framing is tested in accordance with the criteria of BS 476: Part 476: 1987 and/or AS 1530: Part 4: 2005(1). The load bearing capacity of the studs are calculated in accordance with BS 5950: Part 8: 2003 and AS 4600: 1996 for load cases defined by AS1170: 2002. The partition system should meet the requirements specified in BCA 2006 Specification Clause 1.8 for static, dynamic and indentation load tests as specified under Clauses 3.1, 3.2 and 3.4.

Jointing

Plain butt joints between machined edges of boards. (2)

Joints filled in preparation for painting. (3)

Joints filled and taped in preparation for decoration. (4)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(5) in accordance with manufacturer’s recommendations.

NOTES:

- (1), (2), (3), (4), (5) delete as appropriate.
- The above partition is approved for heights up to 4800mm using framing members as detailed.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire attack from both sides / Non loadbearing

1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs
2. Galvanised steel studs, measurements in accordance with Studs Table on page 55 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
3. 35mm long No.8 self-tapping screws at maximum 200mm centres
4. 40mm long M6 masonry anchors at nominal 600mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
6. A minimum 10mm air space to be left between the frames to ensure best acoustic performance

Acoustic Table

<table>
<thead>
<tr>
<th>Cavity infill</th>
<th>Stud depth 64mm</th>
<th>Stud depth 76mm</th>
<th>Stud depth 92mm</th>
<th>Stud depth 150mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nil</td>
<td>40/44dB (-6)</td>
<td>41/45dB (-6)</td>
<td>43/46dB (-6)</td>
<td>47/49dB (-7)</td>
</tr>
<tr>
<td>b) Glasswool partition batts 50mm x 32kg/m²</td>
<td>58/59dB (-4)</td>
<td>58/60dB (-7)</td>
<td>58/60dB (-6)</td>
<td>58/61dB (-5)</td>
</tr>
<tr>
<td>c) Glasswool partition batts 75mm x 32kg/m²</td>
<td>59/59dB (-7)</td>
<td>59/60dB (-7)</td>
<td>59/61dB (-7)</td>
<td>59/62dB (-6)</td>
</tr>
<tr>
<td>d) ASB3 / TSB3 Polyester batts 60mm x 8kg/m²</td>
<td>56/57dB (-6)</td>
<td>56/58dB (-6)</td>
<td>56/59dB (-6)</td>
<td>56/59dB (-5)</td>
</tr>
<tr>
<td>e) Soundscreen™ R1.6 Batt 60mm</td>
<td>57/58dB (-7)</td>
<td>57/59dB (-7)</td>
<td>57/59dB (-6)</td>
<td>57/60dB (-5)</td>
</tr>
</tbody>
</table>

NOTE: Above values are predicted figures. Margin of error is generally within ±3dB
1. One layer of PROMATECT® 100 board 20mm thick at both sides of steel studs
2. Cavity infill if required to improve acoustic or thermal insulation
3. Galvanised steel studs, measurements in accordance with Studs Table on page 55 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
4. 35mm long No.8 self-tapping screws at maximum 200mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
6. 20mm thick PROMATECT® 100 cover strips
7. A minimum 10mm air space to be left between the frames to ensure best acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
The following are standard Architectural Specifications for double steel stud partition systems using PROMATECT® 100. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to 120 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 476: 1987 and/or AS 1530: Part 4: 2005(1).

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index up to $R_w 60$.

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. steel stud or perimeter steel channel, has a fire resistance equal to or greater than 120 minutes.

Lining Boards
Single layer each side 20mm thick PROMATECT® PromaX® mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing. Standard board dimension 1200mm x 2500mm x 20mm thick.

Fixing
2 rows of galvanised steel framing made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 600mm centres. An air gap of 10mm minimum will be provided between the two rows of the galvanised steel frame. Vertical steel studs are then friction fitted into each of the two rows tracks at 600mm centres for boards to be installed vertically and at 625mm centres for boards to be installed horizontally. Adequate clearance for vertical expansion will be allowed at the ceiling/top track. No clearance is necessary at the bottom track. See table below for steel size and clearance at top track for given partition height. Horizontal noggings, cut out of the steel track material will be friction fitted between the steel studs.

Studs Table
Partitions lined with 20mm thick PROMATECT® 100 using studs at 600mm centres, 0.25kPa, minimum two rows of nogging.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Maximum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>64mm</td>
<td>0.5mm</td>
<td>104mm</td>
<td>64 x 50 x 0.75mm</td>
<td>20mm</td>
</tr>
<tr>
<td>3600mm</td>
<td>64mm</td>
<td>0.75mm</td>
<td>104mm</td>
<td>Special Design*</td>
<td>24mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>64mm</td>
<td>1.15mm</td>
<td>104mm</td>
<td>Special Design*</td>
<td>29mm</td>
</tr>
<tr>
<td>3500mm</td>
<td>76mm</td>
<td>0.55mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>23mm</td>
</tr>
<tr>
<td>4100mm</td>
<td>76mm</td>
<td>0.75mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>28mm</td>
</tr>
<tr>
<td>4850mm</td>
<td>76mm</td>
<td>1.15mm</td>
<td>116mm</td>
<td>Special Design*</td>
<td>33mm</td>
</tr>
<tr>
<td>3733mm</td>
<td>92mm</td>
<td>0.55mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>25mm</td>
</tr>
<tr>
<td>4700mm</td>
<td>92mm</td>
<td>0.75mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>32mm</td>
</tr>
<tr>
<td>5600mm</td>
<td>92mm</td>
<td>1.15mm</td>
<td>132mm</td>
<td>Special Design*</td>
<td>38mm</td>
</tr>
<tr>
<td>5867mm</td>
<td>150mm</td>
<td>0.75mm</td>
<td>190mm</td>
<td>Special Design*</td>
<td>39mm</td>
</tr>
<tr>
<td>7800mm</td>
<td>150mm</td>
<td>1.15mm</td>
<td>190mm</td>
<td>Special Design*</td>
<td>50mm</td>
</tr>
</tbody>
</table>

*Top tracks are designed or tested in accordance with AS 4600: 1996 for a clearance between stud and top track as shown above. Please consult Promat for further details.
20mm thick PROMATECT® 100 boards will be screw fixed to the frame with 35mm long No.8 self-tapping screws at maximum 300mm centres.

Tests & Standards
Along with all material tests the complete system along with the framing is tested in accordance with the criteria of BS 476: Part 476: 1987 and/or AS 1530: Part 4: 2005(1).

Jointing
Plain butt joints between machined edges of boards. (2)
Joints filled in preparation for painting. (3)
Joints filled and taped in preparation for decoration. (4)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling(2) in accordance with manufacturer’s recommendations.

NOTES:
- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
One layer of PROMINA® 60 board 9mm thick at one side of wall for heights up to 7000mm

2. Galvanised steel studs, measurements in accordance with Studs Tables 1–2 below, vertical studs at maximum 610mm centres (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)

3. 40mm long M6 masonry anchors at nominal 500mm centres

4. Caulk all perimeter gaps with PROMASEAL® AN Fire Resistant Acrylic Sealant to achieve stated fire and/or acoustic performance

5. 25mm long self-tapping screws at nominal 200mm centres for first layer board, and 35mm long self-tapping screws at nominal 200mm centres for second layer board

Studs Table 1: Single layer for heights up to 5000mm – Partitions lined with one layer of 9mm thick PROMINA® 60 using studs at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>50mm</td>
<td>52mm x 35mm x 0.6mm</td>
<td>20mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>0.9mm</td>
<td>50mm</td>
<td>52mm x 45mm x 1.0mm</td>
<td>25mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>50mm</td>
<td>52mm x 50mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>50mm</td>
<td>52mm x 55mm x 1.0mm</td>
<td>35mm</td>
</tr>
</tbody>
</table>

9mm thick PROMINA® 60 boards will be screw fixed to the frame with 25mm self-tapping screws at 200mm nominal centres

Studs Table 2: Double layer for heights up to 12000mm – Partitions lined with two layers of 9mm thick PROMINA® 60 using studs at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Stud flange</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>38mm</td>
<td>0.6mm</td>
<td>68mm</td>
<td>52mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>52mm x 45mm x 1.2mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>67mm x 55mm x 1.2mm</td>
<td>36mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>83mm</td>
<td>65mm x 60mm x 2.0mm</td>
<td>42mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>75mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>93mm</td>
<td>75mm x 70mm x 2.5mm</td>
<td>48mm</td>
</tr>
<tr>
<td>10000mm</td>
<td>100mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>118mm</td>
<td>100mm x 85mm x 2.5mm</td>
<td>60mm</td>
</tr>
<tr>
<td>11000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 2.0mm</td>
<td>66mm</td>
</tr>
<tr>
<td>12000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>3.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 3.0mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

9mm thick PROMINA® 60 boards will be screw fixed to the frame with self-tapping screws at nominal 200mm centres, 25mm long for first layer board and 35mm long for second layer
One layer of PROMINA® 60 board 9mm thick at one side of wall for heights up to 7000mm

Galvanised steel studs, measurements in accordance with Studs Tables 1–2 on page 56, vertical studs at maximum 610mm centres (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)

Caulk all perimeter gaps with PROMASEAL® AN Fire Resistant Acrylic Sealant to achieve stated fire and/or acoustic performance

25mm long self-tapping screws at nominal 200mm centres for first layer board, and 35mm long self-tapping screws at nominal 200mm centres for second layer board

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
The following are standard Architectural Specifications for single steel stud partition systems using PROMINA® 60. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Board Side / Non Loadbearing

Up to 120 minute fire resistance, integrity only in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of $R_w \geq 27$.

Supporting Structure

Care should be taken that any structural element to which the partition system is affixed, e.g. structural steel or concrete/brick wall, has a fire resistance equal to or greater than 120 minutes.

Lining Boards

Single layer of 9mm thick PROMINA® 60 matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing sections. Standard board dimension 1220mm x 2440mm x 9mm thick.

Double layer of 9mm thick PROMINA® 60 matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm at both layers. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing

Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 500mm centres. Vertical steel studs are then friction fitted into the tracks at 610mm maximum centres for boards to be installed vertically or horizontally.

Studs Table 1: Single layer for heights up to 5000mm

Partitions lined with one layer of 9mm thick PROMINA® 60 using studs at 610mm centres.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>59mm</td>
<td>52mm x 35mm x 0.6mm</td>
<td>20mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>0.9mm</td>
<td>59mm</td>
<td>52mm x 45mm x 1.0mm</td>
<td>25mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>59mm</td>
<td>52mm x 50mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>59mm</td>
<td>52mm x 55mm x 1.0mm</td>
<td>35mm</td>
</tr>
</tbody>
</table>

9mm thick PROMINA® 60 boards will be screw fixed to the frame with 25mm self-tapping screws at 200mm nominal centres.

Studs Table 2: Double layer for heights up to 12000mm

Partitions lined with two layers of 9mm thick PROMINA® 60 using studs at 610mm centres.

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Stud flange</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>38mm</td>
<td>0.6mm</td>
<td>68mm</td>
<td>52mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>52mm x 45mm x 1.2mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>68mm</td>
<td>67mm x 55mm x 1.2mm</td>
<td>36mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>65mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>83mm</td>
<td>65mm x 60mm x 2.0mm</td>
<td>42mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>75mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>93mm</td>
<td>75mm x 70mm x 2.5mm</td>
<td>48mm</td>
</tr>
<tr>
<td>10000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>118mm</td>
<td>100mm x 85mm x 2.5mm</td>
<td>60mm</td>
</tr>
<tr>
<td>11000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 2.0mm</td>
<td>66mm</td>
</tr>
<tr>
<td>12000mm*</td>
<td>100mm</td>
<td>50mm</td>
<td>3.0mm</td>
<td>118mm</td>
<td>100mm x 100mm x 3.0mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

9mm thick PROMINA® 60 boards will be screw fixed to the frame with self-tapping screws at nominal 200mm centres, 25mm long for first layer board and 35mm long for second layer.

Tests & Standards

The complete system along with the material and framing and approval for a performance is tested in accordance with the relevant criteria of BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. (1)

Joints filled in preparation for painting. (2)

Joints filled and taped in preparation for decoration. (3)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(4) in accordance with manufacturer’s recommendations.

NOTES:

- (1), (2), (3), (4) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire attack from both sides / Non loadbearing

1. One layer 9mm thick PROMINA® 60 board at each side of the partition
2. 100mm x 9mm thick PROMATECT®-H cover strips, fixed to steel studs using 25mm self-tapping screws at nominal 500mm centres
3. Mineral wool infill to cavity between boards (see page 60 for different fire resistance requirements)
4. Galvanised steel studs, measurements in accordance with Studs Tables 1–2 below (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 32mm long self-tapping screws at nominal 200mm centres
6. 40mm long M6 masonry anchors at nominal 500mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

Studs Table 1: Up to -/60/60 or -/120/60 fire resistance – Single layer 9mm thick PROMINA® 60 board fixed at either side of the stud at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 32mm x 0.6mm</td>
<td>18mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 45mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 55mm x 1.0mm</td>
<td>36mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>86mm</td>
<td>50mm x 60mm x 1.2mm</td>
<td>42mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>50mm</td>
<td>1.6mm</td>
<td>86mm</td>
<td>50mm x 70mm x 1.6mm</td>
<td>48mm</td>
</tr>
<tr>
<td>10000mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>86mm</td>
<td>50mm x 85mm x 2.0mm</td>
<td>60mm</td>
</tr>
<tr>
<td>12000mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>86mm</td>
<td>50mm x 100mm x 2.5mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

9mm thick of PROMINA® 60 boards will be screw fixed to the frame with M4 steel self-tapping screws at 200mm nominal centres.

Studs Table 2: Up to -/120/120 fire resistance – Single layer 9mm thick PROMINA® 60 board fixed at either side of the stud at 610mm centres

<table>
<thead>
<tr>
<th>Galvanised steel stud</th>
<th>Maximum partition height for stud thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>0.6mm</td>
</tr>
<tr>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>100*</td>
<td>50*</td>
</tr>
</tbody>
</table>

*Back to back studs
1. One layer 9mm thick PROMINA® 60 board at each side of the partition
2. 100mm x 9mm thick PROMINA® 60 cover strips, fixed to steel studs using 25mm long self-tapping screws at nominal 500mm centres
3. Mineral wool:
 - One layer of 80mm x ≥23kg/m³ or 50mm x ≥40kg/m³ thick mineral wool for up to -/120/120 fire resistance
 - One layer of 75mm x 100kg/m³ or 50mm x 150kg/m³ thick mineral wool for up to -/120/120 fire resistance
4. Galvanised steel studs, measurements in accordance with Studs Tables 1–2 on page 59 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 32mm long self-tapping screws at nominal 200mm centres
6. 40mm long M6 masonry anchors at nominal 500mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
The following are standard Architectural Specifications for single steel stud partition systems using PROMINA® 60. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to ______ minute\(^1\) fire resistance, integrity and ______ minute\(^\circ\) insulation in accordance with the criteria of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005\(^3\).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of \(R_w\) 41.

Supporting Structure

Care should be taken that any structural element that the partition system is supported from, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than _______ minutes\(^3\).

Lining Boards

Single layer of 9mm thick PROMINA® 60 matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with framing members. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing

Galvanised steel frame made of perimeter channel to be secured to the floor and, ceiling and walls with 40mm long M6 masonry anchors at 500mm centres. Vertical steel studs are friction fitted into the tracks at 610mm centres for boards to be installed. Adequate clearance for vertical expansion will be allowed at the ceiling/top track. No clearance is necessary at the bottom track.

Studs Table 1

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 32mm x 0.6mm</td>
<td>18mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 45mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 55mm x 1.0mm</td>
<td>36mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>86mm</td>
<td>50mm x 60mm x 1.2mm</td>
<td>42mm</td>
</tr>
<tr>
<td>8000mm</td>
<td>50mm</td>
<td>1.6mm</td>
<td>86mm</td>
<td>50mm x 70mm x 1.6mm</td>
<td>48mm</td>
</tr>
<tr>
<td>10000mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>86mm</td>
<td>50mm x 85mm x 2.0mm</td>
<td>60mm</td>
</tr>
<tr>
<td>12000mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>86mm</td>
<td>50mm x 100mm x 2.5mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

9mm thick of PROMINA® 60 boards will be screw fixed to the frame with M4 steel self-tapping screws at 200mm nominal centres.

Studs Table 2

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Stud depth</th>
<th>Minimum stud thickness</th>
<th>Maximum partition thickness</th>
<th>Top track</th>
<th>Clearance at top track</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 3000) mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 32mm x 0.6mm</td>
<td>18mm</td>
</tr>
<tr>
<td>(\leq 4000) mm</td>
<td>50mm</td>
<td>0.6mm</td>
<td>86mm</td>
<td>50mm x 40mm x 0.6mm</td>
<td>24mm</td>
</tr>
<tr>
<td>(\leq 5000) mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 45mm x 1.0mm</td>
<td>30mm</td>
</tr>
<tr>
<td>(\leq 6000) mm</td>
<td>50mm</td>
<td>1.0mm</td>
<td>86mm</td>
<td>50mm x 55mm x 1.0mm</td>
<td>36mm</td>
</tr>
<tr>
<td>(\leq 7000) mm</td>
<td>50mm</td>
<td>1.2mm</td>
<td>86mm</td>
<td>50mm x 60mm x 1.2mm</td>
<td>42mm</td>
</tr>
<tr>
<td>(\leq 8000) mm</td>
<td>50mm</td>
<td>1.6mm</td>
<td>86mm</td>
<td>50mm x 70mm x 1.6mm</td>
<td>48mm</td>
</tr>
<tr>
<td>(\leq 10000) mm</td>
<td>50mm</td>
<td>2.0mm</td>
<td>86mm</td>
<td>50mm x 85mm x 2.0mm</td>
<td>60mm</td>
</tr>
<tr>
<td>(\leq 12000) mm</td>
<td>50mm</td>
<td>2.5mm</td>
<td>86mm</td>
<td>50mm x 100mm x 2.5mm</td>
<td>72mm</td>
</tr>
</tbody>
</table>

*Back to back studs

Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005\(^3\). The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. \(^6\)

Joints filled in preparation for painting. \(^5\)

Joints filled and taped in preparation for decoration. \(^6\)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling\(^7\) in accordance with manufacturer’s recommendations.

NOTES:

\(^1\) insert required fire resistance level not exceeding 120 minutes.

\(^2\) insert required insulation level not exceeding the fire resistance level\(^3\).

\(^3\), \(^4\), \(^5\), \(^6\), \(^7\) delete as appropriate.

\(^*\) All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
PROMINA® 60
Single Steel Stud Partition With Gypsum Plaster (Double Sided)

Fire resistance

- **FRL**: /120/120
- **APPROVAL**: PSB G41751/TSM, BRE CC 89767B

Acoustic

- **# STC**: 46dB
- **# Rw**: 45dB
- **PREDICTED ASSESSMENT**: Marshall Day 18th October 2006

Construction

- **MAXIMUM HEIGHT**: 7000mm
- **MAXIMUM LENGTH**: Unlimited
- **PARTITION THICKNESS**: Nominal 113mm
- **PARTITION MASS**: From 25.80kg/m²

Margin of error is generally within ±3dB

Details for walls above 3000mm high are available on request

1. One layer 9mm thick PROMINA® 60 board at each side of the partition
2. One layer 15mm thick gypsum wall board at each side of the partition
3. Mineral wool infill to cavity between boards if required to improve acoustic performance
4. Galvanised steel studs, measurements in accordance with Studs Table on below (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 25mm long self-tapping screws at nominal 300mm centres for the first layer gypsum wall board, and 32mm long self-tapping screws at nominal 200mm centres for the second layer PROMINA® 60 board
6. 40mm long M6 masonry anchors at nominal 500mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

Studs Table: Single layer 9mm thick PROMINA® 60 board fixed at either side of the stud at 610mm centres

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Proposed measurement of galvanised steel stud, C type</th>
<th>Sectional modulus, Z₁</th>
<th>Minimum measurement of galvanised steel track</th>
<th>Expansion allowance at top horizontal track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>2552mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>18mm</td>
</tr>
<tr>
<td>3500mm</td>
<td>65mm x 40mm x 1mm thick</td>
<td>3039mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>21mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>65mm x 40mm x 5mm x 1.2mm thick (lipped C type)</td>
<td>3970mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>24mm</td>
</tr>
<tr>
<td>4500mm</td>
<td>2 no. of 65mm x 40mm x 0.8mm thick fixed back to back</td>
<td>5024mm³</td>
<td>65mm x 45mm x 1mm thick</td>
<td>27mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>2 no. of 65mm x 45mm x 1mm thick fixed back to back</td>
<td>6203mm³</td>
<td>65mm x 45mm x 1mm thick</td>
<td>30mm</td>
</tr>
<tr>
<td>5500mm</td>
<td>2 no. of 65mm x 50mm x 1mm thick fixed back to back</td>
<td>7505mm³</td>
<td>65mm x 50mm x 1mm thick</td>
<td>33mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>2 no. of 65mm x 50mm x 1.2mm thick fixed back to back</td>
<td>8322mm³</td>
<td>65mm x 50mm x 1mm thick</td>
<td>36mm</td>
</tr>
<tr>
<td>6500mm</td>
<td>2 no. of 65mm x 55mm x 10mm x 1.2mm thick (lipped C type) fixed back to back</td>
<td>10483mm³</td>
<td>65mm x 55mm x 1mm thick</td>
<td>39mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>2 no. of 65mm x 55mm x 20mm x 1.2mm thick (lipped C type) fixed back to back</td>
<td>12157mm³</td>
<td>65mm x 55mm x 1mm thick</td>
<td>42mm</td>
</tr>
</tbody>
</table>

25mm long self-tapping screws at nominal 300mm centres for the first layer gypsum wall board, and 32mm long self-tapping screws at nominal 200mm centres for the second layer PROMINA® 60 board
1. One layer 9mm thick PROMINA® 60 board at each side of the partition
2. One layer 15mm thick gypsum wall board at each side of the partition
3. One layer of mineral wool if required to improve acoustic performance (optional thermal insulation available on request)
4. Galvanised steel studs, measurements in accordance with Studs Table on page 62 (allow appropriate expansion at top horizontal track, no allowance at this track for loadbearing purposes)
5. 25mm long self-tapping screws at nominal 300mm centres for the first layer gypsum wall board, and 32mm long self-tapping screws at nominal 200mm centres for the second layer PROMINA® 60 board
6. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints.
The following are standard Architectural Specifications for single steel stud partition systems using PROMINA® 60 incorporating gypsum plaster. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to 120 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005(1).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of R_w 45.

Supporting Structure

Care should be taken that any structural element that the partition system is supported from, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than 120 minutes.

Lining Boards

First layer of 15mm thick gypsum wall board on both sides. Stagger joints between layers by at least 300mm nominal centres.

Outer layer of 9mm thick PROMINA® 60 matrix engineered mineral boards on both sides as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm nominal centres. Standard board dimension 1220mm x 2440mm x 9mm thick

Fixing

Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 500mm centres. Vertical steel studs are then friction fitted into the tracks at 610mm maximum centres for boards to be installed vertically.

Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 and/or AS 1530: Part 4: 2005(3). The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. (2)

Joints filled in preparation for painting. (3)

Joints filled and taped in preparation for decoration. (4)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(5) in accordance with manufacturer’s recommendations.

NOTES:

- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.

Studs Table

<table>
<thead>
<tr>
<th>Maximum partition height</th>
<th>Proposed measurement of galvanised steel stud, C type</th>
<th>Sectional modulus, Z</th>
<th>Minimum measurement of galvanised steel track</th>
<th>Expansion allowance at top horizontal track</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mm</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>2552mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>18mm</td>
</tr>
<tr>
<td>3500mm</td>
<td>65mm x 40mm x 1mm thick</td>
<td>3093mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>21mm</td>
</tr>
<tr>
<td>4000mm</td>
<td>65mm x 40mm x 5mm x 1.2mm thick (lipped C type)</td>
<td>3970mm³</td>
<td>65mm x 40mm x 0.8mm thick</td>
<td>24mm</td>
</tr>
<tr>
<td>4500mm</td>
<td>2 no. of 65mm x 40mm x 0.8mm thick fixed back to back</td>
<td>5024mm³</td>
<td>65mm x 45mm x 1mm thick</td>
<td>27mm</td>
</tr>
<tr>
<td>5000mm</td>
<td>2 no. of 65mm x 45mm x 1mm thick fixed back to back</td>
<td>6203mm³</td>
<td>65mm x 45mm x 1mm thick</td>
<td>30mm</td>
</tr>
<tr>
<td>5500mm</td>
<td>2 no. of 65mm x 50mm x 1mm thick fixed back to back</td>
<td>7505mm³</td>
<td>65mm x 50mm x 1mm thick</td>
<td>33mm</td>
</tr>
<tr>
<td>6000mm</td>
<td>2 no. of 65mm x 50mm x 1.2mm thick fixed back to back</td>
<td>8932mm³</td>
<td>65mm x 50mm x 1mm thick</td>
<td>36mm</td>
</tr>
<tr>
<td>6500mm</td>
<td>2 no. of 65mm x 55mm x 10mm x 1.2mm thick (lipped C type) fixed back to back</td>
<td>10483mm³</td>
<td>65mm x 55mm x 1mm thick</td>
<td>39mm</td>
</tr>
<tr>
<td>7000mm</td>
<td>2 no. of 65mm x 55mm x 20mm x 1.2mm thick (lipped C type) fixed back to back</td>
<td>12157mm³</td>
<td>65mm x 55mm x 1mm thick</td>
<td>42mm</td>
</tr>
</tbody>
</table>

25mm long self-tapping screws at nominal 300mm centres for the first layer gypsum wall board, and 32mm long self-tapping screws at nominal 200mm centres for the second layer PROMINA® 60 board.
Fire resistance

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>FRL</th>
<th>-60/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td>BS476: Part 22: 1987</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td>BFTC 00/02 WF 190932</td>
<td></td>
</tr>
</tbody>
</table>

Acoustic

<table>
<thead>
<tr>
<th># STC</th>
<th># Rw</th>
</tr>
</thead>
<tbody>
<tr>
<td>43dB</td>
<td>43dB</td>
</tr>
</tbody>
</table>

STANDARD

PREDICTED ASSESSMENT

Marshall Day

18th October 2006

Construction

<table>
<thead>
<tr>
<th>Maximum Height</th>
<th>3000mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Length</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Partition Thickness</td>
<td>Nominal 87mm</td>
</tr>
<tr>
<td>Partition Mass</td>
<td>From 20.57kg/m²</td>
</tr>
</tbody>
</table>

*Margin of error is generally within ±3dB

*Details for walls above 3000mm high are available on request

1. One layer 6mm thick PROMINA®-HD board at each side of the partition
2. One layer 12.5mm thick gypsum wall board at each side of the partition
3. Galvanised steel studs 48mm x 35mm x 0.5mm thick at maximum 610mm centres
4. Top and bottom tracks 50mm x 25mm x 0.5mm thick (allow appropriate expansion at top horizontal track)
5. Steel channel 99mm x 9.5mm x 0.9mm thick across the horizontal joints, in line with the joints in the outer layer of boards only
6. 32mm long self-tapping screws at nominal 200mm centres
7. 40mm long M6 masonry anchors at nominal 500mm centres
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
1. One layer 6mm thick PROMINA®-HD board at each side of the partition
2. One layer 12.5mm thick gypsum wall board at each side of the partition
3. Galvanised steel studs 48mm x 35mm x 0.5mm thick at maximum 610mm centres
4. Top and bottom tracks 50mm x 25mm x 0.5mm thick (allow appropriate expansion at top horizontal track)
5. Steel channel 99mm x 9.5mm x 0.9mm thick across the horizontal joints, in line with the joints in the outer layer of boards only
6. 32mm long self-tapping screws at nominal 200mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 5 for bottom and top track fixings; pages 9 to 13 for details of wall head, wall base, wall junction and wall movement joints
The following are standard Architectural Specifications for single steel stud partition systems using PROMINA®-HD incorporating gypsum plaster. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a qualified engineer.

Fire Attack From Internal Side / Non Loadbearing
Up to 60 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of R_w 43.

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than 60 minutes.

Lining Boards
First layer of 12.5mm thick gypsum wall board on both sides. Stagger joints between layers by at least 300mm nominal centres.

Outer layer of 6mm thick PROMINA®-HD fibre silicate boards on both sides as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm nominal centres. Standard board dimension 1220mm x 2440mm x 6mm thick.

Fixing
Galvanised steel frame made of perimeter steel channel will be secured to the floor and, ceiling and walls with 40mm long M6 masonry anchors at 600mm centres. Vertical steel studs are friction fitted into the tracks at 610mm centres for boards to be installed. Adequate clearance for vertical expansion will be allowed at the ceiling/top track. No clearance is necessary at the bottom track.

12.5mm thick gypsum board will be fixed to perimeter channel using 25mm drywall screws at 200mm centres. Then the second layer of 6mm PROMINA®-HD board is fixed to the gypsum board with 32mm of drywall screws at 200mm nominal centres.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5.

Jointing
Plain butt joints between machined edges of boards. (2)
Joints filled in preparation for painting. (3)
Joints filled and taped in preparation for decoration. (4)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling (5) in accordance with manufacturer’s recommendations.

NOTES:
- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
1. One layer PROMATECT®-S board at each side of the partition

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/120/-</td>
<td>6mm</td>
</tr>
<tr>
<td>-/300/15</td>
<td>9.5mm</td>
</tr>
</tbody>
</table>

2. 100mm x 50mm x 3mm thick steel channel forming framework, usually comprised of channels located at 1200mm centres or at every board vertical edge. These framing centres may vary depending on the overall dimensions and performance requirements of the system.

3. Steel sections forming top and bottom tracks of framework, usually comprised of channels, fixed to substrate using non-combustible expansion bolts at nominal 500mm centres.

4. 38mm long M5.5 Tek screws at nominal 200mm centres.

5. 40mm long M8 masonry anchors at nominal 500mm centres.

6. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance.

* Details for walls above 3000mm high are available on request.

Margin of error is generally within ±3dB
1. One layer PROMATECT®-S board at each side of the partition

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/120/-</td>
<td>6mm</td>
</tr>
<tr>
<td>-/300/15</td>
<td>9.5mm</td>
</tr>
</tbody>
</table>

2. Horizontal framing members comprised of steel channels at 2500mm centres or at every board horizontal edge. Alternatively use 100mm x 3mm flat steel plate

3. 100mm x 50mm x 3mm thick steel channel forming framework, usually comprised of channels located at 1200mm centres or at every board vertical edge. These framing centres may vary depending on the overall dimensions and performance requirements of the system

4. Steel sections forming top and bottom tracks of framework, usually comprised of channels, fixed to substrate using non combustible expansion bolts at nominal 500mm centres

5. 38mm long M.5.5 Teks screws at nominal 200mm centres

6. Steel angle cleats joining framing sections. Alternatively, joints between framing members can be welded

7. Welded joint

8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT®-S. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to _________ minute\(^{(1)}\) fire resistance, integrity and _________ minute\(^{(2)}\) insulation in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of \(R_w \ _________ \) \(^{[3]}\).

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than _________ minutes\(^{(4)}\).

Lining Boards
Single layer of 6mm or 9.5mm\(^{(4)}\) thick PROMATECT®-S cement/steel composite boards as manufactured by Promat International (Asia Pacific) Ltd. Cover strips or fillets are not required if each lining is secured to separated framing.

Fixing
Galvanised or painted frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M8 masonry anchors at 500mm centres. Vertical steel studs are then welded or bolted into the tracks at 1200mm maximum centres or at every board horizontal edge. 6mm or 9.5mm\(^{(3)}\) thick PROMATECT®-S boards will be screw fixed to the frame with 38mm x 5.5mm Teks screw at 200mm nominal centres.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5. The construction also has been tested to impact resistance in accordance to EN 1363: Part 2: 1998.

Follow-on Trades
Surface of boards to be prepared for painting/tiling\(^{(5)}\) in accordance with manufacturer’s recommendations.

NOTES:
- \(^{(1)}\) insert required fire resistance level not exceeding 300 minutes.
- \(^{(2)}\) insert required insulation level not exceeding 15 minutes.
- \(^{(3)}\) insert acoustic value not exceeding 29dB (for /-120/- fire resistance) or 30dB (for /-300/15 fire resistance)
- \(^{(4)}\), \(^{(5)}\) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire Resistance

STANDARD

APPROVAL
BRE CC 201034
BFTC 97/17
LPC TE92170

Acoustic

<table>
<thead>
<tr>
<th># STC</th>
<th># R_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>50dB (-/240/60)</td>
<td>53 or 55dB (-/240/240)</td>
</tr>
<tr>
<td>52dB (-/240/60)</td>
<td>30 (-8) or 35 (-9) dB (-/240/240)</td>
</tr>
</tbody>
</table>

STANDARD

Predicted Assessment

Marshall Day
18th October 2006

Construction

- **MAXIMUM HEIGHT**
 5000mm

- **MAXIMUM LENGTH**
 Unlimited

- **PARTITION THICKNESS**
 Nominal 124mm (-/240/60)
 Nominal 135mm (-/240/240)

- **PARTITION MASS**
 From 61.17kg/m² (-/240/60)
 From 95.72kg/m² (-/240/240)

Margin of error is generally within ±3dB

Alternative type

Details for walls above 3000mm high are available on request

1. One layer 9.5mm thick PROMATECT®-S board at each side of the partition
2. Steel channels at nominal 1200mm centres
3. Steel sections forming top and bottom tracks of framework, usually comprised of channels
4. 35mm long M6 Teks screws at nominal 200mm centres
5. 40mm long M10 masonry anchors at nominal 500mm centres
6. Two layers of PROMATECT®-S fillet strip, 100mm x 9.5mm thick at horizontal board joints in accordance with system specifications
7. Mineral wool infill to cavity between boards
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

NOTE: PROMATECT®-S partitions are generally designed to meet specific project performance requirements including resistance to fire, impact, explosion etc. Please consult Promat Technical Department for details on framing elements etc.
Vertical sheeting with plate joint (double sided) / Non loadbearing

- One layer 9.5mm thick PROMATECT®-S board at each side of the partition
- Two layers of mineral wool 50mm x 60kg/m³, with joints between layers staggered minimum 300mm
- Horizontal framing members comprised of flat steel plates 100mm x 3mm thick at 2500mm centres or at every board horizontal edge
- Steel sections forming framework, comprised of angles or channels located at 600mm centres or at every board vertical edge. These angles should be offset so that there is a clear space between opposing angles of a minimum 10mm to prevent heat transfer through the construction, these framing centres may vary depending on the size and performance requirements of the system
- Steel sections forming top and bottom tracks of framework, usually comprised of channels, fixed to substrate using 40mm long M10 masonry anchors at nominal 500mm centres
- 35mm long M6 Tek screws at nominal 200mm centres
- Steel angle cleats joining framing sections. Alternatively, joints between framing members can be welded
- Welded joint
- Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

For up to FRL -/240/60

1. One layer 9.5mm thick PROMATECT®-S board at each side of the partition
2. Two layers of mineral wool 50mm x 60kg/m³, with joints between layers staggered minimum 300mm
3. Horizontal framing members comprised of flat steel plates 100mm x 3mm thick at 2500mm centres or at every board horizontal edge
4. Steel sections forming framework, comprised of angles or channels located at 600mm centres or at every board vertical edge. These angles should be offset so that there is a clear space between opposing angles of a minimum 10mm to prevent heat transfer through the construction, these framing centres may vary depending on the size and performance requirements of the system
5. Steel sections forming top and bottom tracks of framework, usually comprised of channels, fixed to substrate using 40mm long M10 masonry anchors at nominal 500mm centres
6. 35mm long M6 Teks screws at nominal 200mm centres
7. Steel angle cleats joining framing sections. Alternatively, joints between framing members can be welded
8. Welded joint
9. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
For up to FRL -/240/240

1. One layer 9.5mm thick PROMATECT®-S board at each side of the partition.
2. Two layers of PROMATECT®-S cover strip, 100mm x 9.5mm thick each at horizontal board joints.
3. Three layers of mineral wool, with joints between layers staggered minimum 300mm.
4. Horizontal framing members comprised of steel channels at 2500mm centres or at every board horizontal edge. Alternatively use 100mm x 3mm flat steel plate.
5. Steel sections forming framework, comprised of channels located at 1200mm centres or at every board vertical edge. These framing centres may vary depending on the size and performance requirements of the system.
6. Steel sections forming top and bottom tracks of framework, usually comprised of channels, fixed to substrate using 40mm long M10 masonry anchors at nominal 500mm centres.
7. 35mm long M6 Tek screws at nominal 200mm centres.
8. Steel angle cleats joining framing sections. Alternatively, joints between framing members can be welded.
10. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance.
The following are standard Architectural Specifications for single steel stud partition systems using PROMATECT®-S. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to ________ minute(1) fire resistance, integrity and ________ minute(2) insulation in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of R_w ________ (3).

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than ________ minutes(4).

Lining Boards
Single layer of 6mm or 9.5mm(5) thick PROMATECT®-S cement/steel composite boards as manufactured by Promat International (Asia Pacific) Ltd. Cover strips or fillets are not required if each lining is secured to separated framing.

Fixing
Galvanised or painted frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M10 masonry anchors at 500mm centres. Vertical steel studs are then welded or bolted into the tracks at 1200mm maximum centres or at every board horizontal edge.

6mm or 9.5mm(6) thick PROMATECT®-S boards will be screw fixed to the frame with 38mm long M6 Teks screw at 200mm nominal centres.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5. The construction also has been tested to impact resistance in accordance to EN 1363: Part 2: 1998.

Follow-on Trades
Surface of boards to be prepared for painting/tiling(7) in accordance with manufacturer’s recommendations.

NOTES:
- (1) insert required fire resistance level not exceeding 240 minutes.
- (2) insert required insulation level not exceeding the fire resistance level(1).
- (3) insert acoustic value not exceeding 52dB (for -/240/60 fire resistance) or 56dB (for -/240/240 fire resistance)
- (4)-(7) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire attack from both sides / Non loadbearing

Fire resistance

- FRL
 - /30/30
 - /60/60
 - /90/90
 - /120/120

STANDARD

- AS1530: Part 4: 2005

APPROVAL

- WFRA 45713

Acoustic

- # STC
 - 35dB (-/30/30)
 - 39dB (-/60/60) (-/90/90)
 - (-/120/120)

- # Rw
 - 35dB (-/30/30)
 - 39dB (-/60/60) (-/90/90)
 - (-/120/120)

STANDARD

PREDICTED ASSESSMENT

- Marshall Day
 - 18th October 2006

Construction

- MAXIMUM HEIGHT*
 - 3050mm

- MAXIMUM LENGTH
 - Unlimited

- PARTITION THICKNESS
 - From 75mm (-/30/30)
 - From 81mm (-/60/60) (-/90/90)
 - (-/120/120)

- PARTITION MASS*
 - From 20.95kg/m² (-/30/30)
 - From 27.65kg/m² (-/60/60)
 - From 29.41kg/m² (-/90/90)
 - From 31.89kg/m² (-/120/120)

Margin of error is generally within ±3dB

* Details for walls above 3000mm high are available on request

1. One layer of PROMATECT®-H board, 6mm or 9mm thick in accordance with system specifications
2. Timber studs 63mm x 50mm or 70mm x 38mm at 610mm centres
3. Mineral wool infill to cavity between boards (see page 76 for different fire resistance requirements)
4. 50mm-60mm steel wire nails at nominal 200 centres or 50-63mm x No.8 screws at nominal 300mm centres
5. 100mm long M6 masonry anchors at nominal 600mm centres
6. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
7. Rondo P35 control joint or similar, please refer to page 13 for detail
8. Flush joint
9. Non fire resistant backing rod 22mm diameter for acoustic integrity

NOTE: Top and bottom tracks must be discontinuous at control joints
1. **PROMATECT®-H board**, thickness in accordance with the table below as per the required fire resistance performance, at each side of the partition.

2. **Mineral wool**, minimum density and thickness in accordance with the table below as per the required fire resistance performance.

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Board thickness</th>
<th>Mineral wool thickness x minimum density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/30/30</td>
<td>6mm</td>
<td>One layer of 60mm x 23kg/m²</td>
</tr>
<tr>
<td>-/60/60</td>
<td>9mm</td>
<td>One layer of 80mm x 23kg/m²</td>
</tr>
<tr>
<td>-/90/90</td>
<td>9mm</td>
<td>One layer of 60mm x 60kg/m²</td>
</tr>
<tr>
<td>-/120/120</td>
<td>9mm</td>
<td>Two layers of 38mm x 80kg/m², each with all joints staggered between layers</td>
</tr>
</tbody>
</table>

3. **63mm x 50mm or 70mm x 38mm timber studs at 610mm centres** (allow appropriate expansion at top horizontal track, horizontal nogging at all board joints).

4. **50mm long wire nails at nominal 200mm centres or 45mm long self-tapping screws at nominal 300mm centres for -/30/30, -/60/60 or -/90/90 fire resistance**

5. **63mm long wire nails at nominal 200mm centres or 55mm long self-tapping screws at nominal 300mm centres for -/120/120 fire resistance**

6. **Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance**

See page 6 for fixings of cross noggings and floor plate; page 75 for detail of wall movement joints.
The following are standard Architectural Specifications for timber stud partition systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to _________ minute(1) fire resistance, integrity and _________ minute(2) insulation in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(3).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of R_w _________(4).

Supporting Structure

Care should be taken to ensure that any structural element by which the partition system is supported, e.g. steel stud or perimeter steel channel, has a fire resistance equal to or greater than _________ minutes(5).

Lining Boards

Single layer of 6mm or 9mm(6) thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing or PROMATECT®-H board strip. Standard board dimension 1220mm x 2440mm x 6mm or 9mm(6) thick.

Fixing

Softwood timber, 63mm deep x 50mm wide will be fixed to the perimeter of the opening where the partition system is to be installed using M6 expanding anchors at 610mm centres.

Where the board are to be installed with their long edges vertical, the studs are located at 610mm maximum centres with cross noggings at 2440mm centres. Where the boards are to be installed with their long edges horizontal, the studs are located at 610mm centres with cross noggings at 1220mm centres.

The PROMATECT®-H board are fixed to the framework using wire head nails of an appropriate length, not less than 50mm, or No.8 screws of an appropriate length at nominal 300mm centres, a minimum of 12mm from the board edge.

Mineral wool will be contained within the cavity.

Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(3). The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. (5)
Joints filled in preparation for painting. (6)
Joints filled and taped in preparation for decoration. (7)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(6) in accordance with manufacturer’s recommendations.

NOTES:
- (1) insert required fire resistance level not exceeding 120 minutes.
- (2) insert required insulation level not exceeding the fire resistance level(3).
- (3), (5), (6), (7), (8) delete as appropriate.
- (4) insert acoustic value not exceeding 35dB (for -/30/30 fire resistance) or 39dB (for -/60/60, -/90/90 and -/120/120 fire resistance)
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire attack from both sides / Non loadbearing

Construction

- **MAXIMUM HEIGHT**
 - 3000mm
- **MAXIMUM LENGTH**
 - Unlimited
- **PARTITION THICKNESS**
 - From 130mm
- **PARTITION MASS**
 - From 37kg/m²

Acoustic

- **# STC**
 - 35dB
- **# Rw**
 - 39dB

Fire resistance

- **FRL**
 - 120/120/120

Approval

- **STANDARD**
- **APPROVAL**
 - BRE CC 232158A
 - BRE CC 232158B

PREDICTED ASSESSMENT

- **Marshall Day**
 - 18th October 2006

Margin of error

- # Margin of error is generally within ±3dB
- # Details for walls above 3000mm high are available on request

Details

1. One layer of PROMATECT® 100 board 20mm thick
2. Timber studs 90mm deep x 45mm wide at nominal 600mm or 625mm centres
3. 100mm long No.8 woodscrews at 250mm nominal centres
4. M6 expanding anchors at 600mm maximum centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

For loadbearing partition, the required size of the stud should be calculated by a qualified structural engineer who must allow for the depth of the stud to be reduced by 50mm and width by 10mm through charring and the consequential reduction in loadbearing capability.
1. One layer of PROMATECT® 100 board 20mm thick
2. Vertical studs at 600mm centres
3. Horizontal nogging at 1250mm centres
4. 100mm x No.8 woodscrews at 250mm nominal centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance.

See page 6 for fixings of cross noggings and floor plate; page 75 for detail of wall movement joints.
Horizontal sheeting with nogging joint / loadbearing

1. One layer of PROMATECT® 100 board 20mm thick
2. Vertical studs at 600mm centres
3. Horizontal nogging at 600mm centres
4. 100mm long No.8 woodscrews at 250mm nominal centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 6 for fixings of cross noggings and floor plate; page 75 for detail of wall movement joints.
The following are standard Architectural Specifications for timber stud partition systems using PROMATECT® 100. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing & Loadbearing
Up to 120 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(1).

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index up to R_w 39.

Supporting Structure
Care should be taken that any structural element that the partition system is supported from, e.g. steel stud or perimeter steel channel, has a fire resistance equal to or greater than 120 minutes.

Lining Boards
Single layer each side 20mm thick PROMATECT® 100 PromaX® mineral boards as manufactured by Promat International (Asia Pacific) Ltd. All joints to be coincident with steel framing. Standard board dimension 1200mm x 2500mm x 20mm thick.

Fixing
Softwood timber, 90mm deep x 45mm wide will be fixed to the perimeter of the opening where the partition system is to be installed using M6 expanding anchors at 600mm maximum centres.

Where the boards are to be installed with their long edges vertical, the studs are located at 600mm maximum centres with cross noggings at 1250mm centres. Where the boards are to be installed with their long edges horizontal, the studs are located at 625mm centres with cross noggings at 600mm centres.

The PROMATECT® 100 boards are fixed to the framework using 100mm long No.8 woodscrews at maximum 250mm centres, a minimum of 12mm from the board edge.

Where there is a requirement for loadbearing, the required size of the timber stud will be calculated by a qualified structural engineer who should allow for the depth of the stud to be reduced by 50mm and the width by 10mm through charring.

Tests & Standards
Along with all material tests the complete system along with the framing is tested in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(1).

Jointing
Plain butt joints between machined edges of boards. (2)
Joints filled in preparation for painting. (3)
Joints filled and taped in preparation for decoration. (4)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling(5) in accordance with manufacturer’s recommendations.

NOTES:
- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Connection Details of Solid/Frameless Internal Partitions

1. PROMATECT®-H or PROMATECT® 100 board
2. Galvanised steel perimeter angle 50mm x 50mm x 1mm thick
3. 40mm long M6 masonry anchors at nominal 500mm centres
4. 32mm long No.8 self-tapping screws at nominal 300mm centres for first layer and 50mm long No.8 self-tapping screws at nominal 200mm centres for second layer
5. 40mm long No.10 laminating stitching screws at 200mm centres

Once first layer of board is screwed to the perimeter angles, all subsequent layers are:

a) fixed to the perimeter angle, and
b) stitched to the proceeding layers of boards
Fire resistance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-/60/60</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
<tr>
<td>-/120/120</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
<tr>
<td>-/300/300 (Please consult Promat)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35dB (-/60/60)</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
<tr>
<td>36dB (-/120/120)</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
<tr>
<td>36dB (-/60/60)</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
<tr>
<td>37dB (-/120/120)</td>
<td>BRE CC 86480A (-/60/60)</td>
<td>BRE CC 81584A (-/120/120)</td>
</tr>
</tbody>
</table>

Construction

| MAXIMUM HEIGHT | 3000mm (-/60/60) | 4880mm (-/120/120) |
| MAXIMUM LENGTH | Unlimited |

PARTITION THICKNESS	-/60/60	-/120/120
PARTITION MASS	Nom. 35mm (-/60/60: two layers)	Nom. 35mm (-/60/60: two layers)
	Nom. 36mm (-/60/60: three layers)	Nom. 36mm (-/60/60: three layers)
	Nom. 36mm (-/60/60: four layers)	Nom. 36mm (-/60/60: four layers)
	Nom. 50mm (-/120/120: two layers)	Nom. 50mm (-/120/120: three layers)

- **PROMATECT®-H** board, stagger the joints by at least 350mm. When using boards with different thickness, fix the thicker board first. Thickness in accordance to table below

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Number of board and thickness</th>
<th>Steel perimeter angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/60/60</td>
<td>One layer of 15mm + One layer of 20mm</td>
<td>40mm x 40mm x 1mm thick</td>
</tr>
<tr>
<td></td>
<td>Three layers of 12mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Four layers of 9mm</td>
<td></td>
</tr>
<tr>
<td>-/120/120</td>
<td>Two layers of 25mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two layers of 15mm + One layer of 20mm</td>
<td>50mm x 50mm x 1mm thick</td>
</tr>
</tbody>
</table>

- Galvanised steel perimeter angle, size in accordance to table above
- 40mm long M6 masonry anchors at nominal 500mm centres
- 30mm long No.8 self-tapping screws fixed to steel perimeter angle at 200mm centres
- Laminating stitching screws, types and fixings around the steel perimeter angle and down the centre of each board in accordance with system specifications

Margin of error is generally within ±3dB
Two layers of PROMATECT®-H board, stagger the joints by at least 350mm. When using boards with different thickness, fix the thicker board first. Thickness in accordance to table below:

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Number of board and thickness</th>
<th>Steel perimeter angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/-60/60</td>
<td>One layer of 15mm + One layer of 20mm</td>
<td>40mm x 40mm x 1mm thick</td>
</tr>
<tr>
<td>+/-120/120</td>
<td>Two layers of 25mm</td>
<td>50mm x 50mm x 1mm thick</td>
</tr>
</tbody>
</table>

1. Two layers of PROMATECT®-H board, stagger the joints by at least 350mm. When using boards with different thickness, fix the thicker board first. Thickness in accordance to table below.

2. 30mm long No.8 self-tapping screws fixed to steel perimeter angle at 200mm centres.

3. Laminating stitching screws of appropriate length at maximum 300mm centres.
 Once first layer of board is screwed to the perimeter angles, all subsequent layers are:
 a) fixed to the perimeter angle, and
 b) stitched to the proceeding layers of boards.

4. Galvanised steel perimeter angle, size in accordance to table above.

5. 40mm long M6 masonry anchors at nominal 500mm centres.

See page 82 for wall connection details.
Three layers of PROMATECT®-H board, stagger the joints by at least 300mm. When using boards with different thickness, fix the thicker board first. Thickness in accordance to table below.

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Number of board and thickness</th>
<th>Steel perimeter angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/60/60</td>
<td>Three layers of 12mm</td>
<td>40mm x 40mm x 1mm thick</td>
</tr>
<tr>
<td>-/120/120</td>
<td>Two layers of 15mm + One layer of 20mm</td>
<td>50mm x 50mm x 1mm thick</td>
</tr>
</tbody>
</table>

- Galvanised steel perimeter angle, size in accordance to table above
- 40mm long M6 masonry anchors at nominal 500mm centres
- 30mm long No.8 self-tapping screws fixed to steel perimeter angle at 200mm centres
- Laminating stitching screws of appropriate length at maximum 300mm centres

Once first layer of board is screwed to the perimeter angles, all subsequent layers are:
- fixed to the perimeter angle, and
- stitched to the proceeding layers of boards

See page 82 for wall connection details
Four layers of PROMATECT®-H board, 9mm thick each stagger the joints by at least 300mm

Galvanised steel perimeter angle 40mm x 40mm x 1mm thick

40mm long M6 masonry anchors at nominal 500mm centres

30mm long No.8 self-tapping screws fixed to steel perimeter angle at 200mm centres

Laminating stitching screws of appropriate length at maximum 300mm centres

Once first layer of board is screwed to the perimeter angles, all subsequent layers are:
 a) fixed to the perimeter angle, and
 b) stitched to the proceeding layers of boards

See page 82 for wall connection details
The following are standard Architectural Specifications for solid internal partition systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to \(\text{minute}\) fire resistance, integrity and \(\text{minute}\) insulation in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005.

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of \(R_w \) dB.

Supporting Structure
Care should be taken to ensure that any structural element by which the partition system is supported, e.g. concrete/brick, has a fire resistance equal to or greater than \(\text{minutes} \) minutes.

Lining Boards

FOR FRL OF -/60/60
One layer of 20mm thick and one layer of 15mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm at the first layer and 200mm on the second layer. Standard board dimension 1220mm x 2440mm x 15mm or 20mm thick.

Three layers of 12mm PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Each successive layer of board must be fastened to the previous layers at 300mm centres.

Four layers of 9mm PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Each successive layer of board must be fastened to the previous layers at 300mm centres.

FOR FRL OF -/120/120
One layer of 20mm thick and two layers of 15mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm at the first layer and 200mm on the second layer. Standard board dimension 1220mm x 2440mm x 15mm or 20mm thick.

Two layers of 25mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm at the first layer and 200mm on the second layer. Standard board dimension 1220mm x 2440mm x 25mm thick.

Fixing

FOR FRL OF -/60/60
Galvanised steel frame made of perimeter steel angle 40mm x 40mm x 1mm thick will be fastened to the wall/floor/ceiling with 40mm long M6 masonry anchors at 500mm centres. First layer 20mm, fixed to perimeter angle using 30mm long No.8 screws at 200mm centres. Second layer 15mm, fixed to first layer using 30mm long No.8 screws at 300mm centres around the perimeter and down the centre of each panel.

Galvanised steel frame made of perimeter steel angle 40mm x 40mm x 1mm thick will be fastened to the wall/floor/ceiling with 40mm long M6 masonry anchors at 600mm centres. First layer, fixed to perimeter angle using 30mm long No.8 screws at 200mm centres. Each successive layer of board must be fastened to the previous layers at 300mm centres.

FOR FRL OF -/120/120
Galvanised steel frame made of perimeter steel angle 50mm x 50mm x 1mm thick will be fastened to the wall/floor/ceiling with 40mm long M6 masonry anchors at 500mm centres. First layer 20mm, fixed to perimeter angle using 32mm x No.8 screws at 200mm centres. Second layer 15mm, fixed to first layer using 45mm long No.8 screws at 300mm centres around the perimeter and down the centre of each panel. Third layer of board must be fastened to the previous layers at 300mm centres using 65mm long No.8 screws.

Galvanised steel frame made of perimeter steel angle 50mm x 50mm x 1mm thick will be fastened to the wall/floor/ceiling with 40mm long M6 masonry anchors at 500mm centres. First layer, fixed to perimeter angle using 32mm long No.8 screws at 200mm centres. Second layer fixed to first layer using 65mm long No.8 screws at 300mm centres around the perimeter and down the centre of each panel.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 and AS 1530: Part 4: 2005. The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards.

Joints filled in preparation for painting.

Joints filled and taped in preparation for decoration.

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling in accordance with manufacturer’s recommendations.

NOTES:
- (1) insert required fire resistance level not exceeding 120 minutes.
- (2) insert required insulation level not exceeding the fire resistance level.
- (3), (5), (6), (7), (8) delete as appropriate.
- (4) insert acoustic value not exceeding 35dB (for -/60/60 fire resistance) or 37dB (for -/120/120 fire resistance).
- (9) All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire resistance

- **FRL**: /120/120
- **STANDARD**: BS476: Part 22: 1987
 - AS1530: Part 4: 2005
- **APPROVAL**: BRANZ FAR 2837

Acoustic

- **# STC**: 36dB
- **# Rw**: 36dB
- **STANDARD**
- **PREDICTED ASSESSMENT**: Marshall Day
 - 18th October 2006

Construction

- **MAXIMUM HEIGHT**: 3000mm
- **MAXIMUM LENGTH**: Unlimited
- **PARTITION THICKNESS**: Nominal 40mm
- **PARTITION MASS**: 34kg/m²

Margin of error is generally within ±3dB

1. Two layers of PROMATECT® 100 board, 20mm thick each stagger the joints by at least 300mm
2. Galvanised steel perimeter angle 50mm x 50mm x 1mm thick
3. 40mm long M6 masonry anchors at nominal 500mm centres
4. 32mm long No.8 self-tapping screws at nominal 300mm centres for first layer and 50mm long No.8 self-tapping screws at nominal 200mm centres for second layer
5. 40mm long No.10 laminating stitching screws at 200mm centres

Once 1st layer of board is screwed to the perimeter angles, all subsequent layers are:

- a) fixed to the perimeter angle, and
- b) stitched to the proceeding layers of boards
Two layers of PROMATECT® 100 board, 20mm thick each stagger the joints by at least 300mm.

Galvanised steel perimeter angle 50mm x 50mm x 1mm thick.

40mm long M6 masonry anchors at nominal 500mm centres.

32mm long No.8 self-tapping screws at nominal 300mm centres for first layer and 50mm long No.8 self-tapping screws at nominal 200mm centres for second layer.

40mm long No.10 laminating stitching screws at 200mm centres.

Once first layer of board is screwed to the perimeter angle, all subsequent layers are:

a) fixed to the perimeter angle, and
b) stitched to the proceeding layers of boards.

See page 82 for wall connection details.
The following are standard Architectural Specifications for solid internal partition systems using PROMATECT® 100. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to 120 minute fire resistance, integrity and insulation in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(1).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index up to $R_w 36$.

Supporting Structure

Care should be taken that any structural element by which the partition system is supported, e.g. steel stud or perimeter steel channel, has a fire resistance equal to or greater than 120 minutes.

Lining Boards

Two layers of 20mm thick PROMATECT® 100 PromaX® mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Stagger joints by at least 300mm. Standard board dimension 1200mm x 2500mm x 20mm thick.

Fixing

Galvanised steel frame made of perimeter steel angle 50mm x 50mm x 1mm thick will be fastened to the wall/floor/ceiling with 40mm long M6 masonry anchors at nominal 500mm centres.

First layer of 20mm thick PROMATECT® 100 boards will be fixed to the perimeter angle using 32mm long No.8 self-drilling or self-tapping screws at 300mm centres. Second layer 20mm, fixed to the first layer using 40mm long No.10 laminating stitching screws at 300mm centres down the centre of each panel at each board joint. Use 50mm x No.8 self-tapping screws at 200mm centres to fix second layer to the perimeter angle.

Tests & Standards

The complete system along with material and framing is tested in accordance with the criteria of BS 476: Part 22: 1987 and AS 1530: Part 4: 2005(1).

Jointing

Plain butt joints between machined edges of boards. (2)

Joints filled in preparation for painting. (3)

Joints filled and taped in preparation for decoration. (4)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(5) in accordance with manufacturer’s recommendations.

NOTES:

- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire resistance

FRL
-/-60/60
-/-120/120

STANDARD
BS476: Part 22: 1987

APPROVAL
BFTC 01/73A
WF 167483

Acoustics

STC
R_{w}

40dB
42dB (-11)

STANDARD

PREDICTED ASSESSMENT
Marshall Day
18th October 2006

Construction

MAXIMUM HEIGHT
4000mm

MAXIMUM LENGTH
Unlimited

PARTITION THICKNESS
Nominal 87mm (-/60/60)
Nominal 96mm (-/120/120)

PARTITION MASS*
37.12kg/m² (-/60/60)
47.77kg/m² (-/120/120)

Margin of error is generally within ±3dB

* Details for walls above 3000mm high are available on request

1. One layer of PROMINA® board 9mm thick
2. PROMINA® cover strip
3. Mineral wool infill to cavity between boards (see page 101 for different fire resistance requirements)
4. Galvanised steel perimeter channel 60mm x 30mm x 0.5mm thick
5. 40mm long M6 masonry anchors at nominal 500mm centres
6. 35mm long No.8 Self-tapping screws at 200mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
1. One layer of PROMINA® board 9mm thick
2. PROMINA® 60 cover strips at vertical board joints, thickness in accordance to table below
3. One layer of PROMINA® 60 cover strip 100mm x 9mm thick at horizontal board joints
4. One layer of PROMINA® 60 spacer strip 45mm x 9mm thick
5. One layer of mineral wool, thickness in accordance to table below

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Mineral wool thickness x minimum density</th>
<th>Cover strips</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/60/60</td>
<td>60mm x 60kg/m³ or 75mm x 45kg/m³</td>
<td>100mm x 9mm thick x 2 layer</td>
</tr>
<tr>
<td>-/120/120</td>
<td>75mm x 100kg/m³</td>
<td>100mm x 9mm thick x 3 layer</td>
</tr>
</tbody>
</table>

6. I-studs 60mm x 39mm x 0.55mm thick at 610mm centres
7. Galvanised steel perimeter channel 60mm x 30mm x 0.5mm thick
8. Vertical channels 60mm x 0.5mm thick at edge of shaft wall partition
9. 35mm long No.8 Self-tapping screws at 200mm centres
10. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

See page 102 for options of wall base and wall movement joints
1. PROMINA® board
2. PROMINA® 60 cover strips
3. PROMINA® 60 spacer strip
4. Mineral wool
5. I-studs
6. Galvanised steel perimeter channel
7. 35mm long No.8 Self-tapping screws at 200mm centres
8. 40mm long M6 masonry anchors
The following are standard Architectural Specifications for shaft wall systems using PROMINA® 60. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to _________ minute(1) fire resistance, integrity and _________ minute(2) insulation in accordance with the criteria of BS 476: Part 22: 1987.

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of R_w 42.

Supporting Structure

Care should be taken that any structural element by which the partition system is supported, e.g. concrete/brick wall or slab, has a fire resistance equal to or greater than _________ minutes(3).

Lining Boards

Single layer of 9mm thick PROMINA® 60 matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing

Galvanised steel frame made of ceiling and floor tracks will be secured to the floor, ceiling and walls with 40mm long M6 masonry anchors at 500mm centres. Vertical I steel studs are then friction fitted into the tracks at 610mm maximum centres for boards to be installed vertically.

9mm thick of PROMINA® 60 boards will be laid inside the I-studs. PROMINA® 60 fillet strips, 9mm thick x 45mm wide, will be fitted within both sides of the I-studs to hold the panels in place. Screw the fillet strips through the I-studs.

All horizontal joints to be backed with a PROMINA® 60 board strip.

Screw the layers of PROMINA® 60 cover fillets to the unexposed face of the partition framing and fix the PROMINA® 60 boards to the framing at 200mm nominal centres using self-tapping drywall type screws of an appropriate length.

Mineral wool will be contained within the cavity.

Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987. The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. (3)

Joints filled in preparation for painting. (4)

Joints filled and taped in preparation for decoration. (5)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(6) in accordance with manufacturer’s recommendations.

NOTES:

- (1) insert required fire resistance level not exceeding 120 minutes.
- (2) insert required insulation level not exceeding the fire resistance level (1).
- (3), (4), (5), (6) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
1. One layer of PROMATECT®-H board 9mm thick
2. Mineral wool where applicable
3. Steel top hat sections approximately 26mm x 80mm x 0.56mm thick. Width of face to which boards are fixed should be minimum 50mm. Secure top hats at 610mm centres to every rail using two steel fixings per rail
4. Horizontal sheeting rail at maximum 1800mm centres, first layer of PROMATECT®-H filler strip 100mm x 9mm thick x depth of the sheeting rail fixed to the rail at the location of the top hat sections
5. Perimeter steel angle, 50mm x 25mm x 0.56mm thick or similar secured to wall or floor using 40mm long M6 masonry anchors at 500mm centres
6. 25mm long No. 8 self-tapping screws at nominal 300mm centres
7. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
1. One layer of PROMATECT®-H board, 9mm thick at each side of wall
2. One layer of mineral wool

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Mineral wool thickness x minimum density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/30/30</td>
<td>Not required</td>
</tr>
<tr>
<td>-/60/60</td>
<td>80mm x ³ 23kg/m³, suspended between the sheeting rails and secured to the underside of each rail using steel angle 50mm x 25mm x 0.56mm thick or similar, fixed through the mineral wool to the rail at maximum 500mm centres</td>
</tr>
<tr>
<td>-/120/120</td>
<td>75mm x ³ 100kg/m³</td>
</tr>
</tbody>
</table>

3. Horizontal sheeting rail at maximum 1800mm centres
4. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve stated fire and/or acoustic performance
5. Perimeter steel angle, 50mm x 25mm x 0.56mm thick or similar secured to wall or floor using 40mm long M6 masonry anchors at 500mm centres
6. Steel top hat sections approximately 26mm x 80mm x 0.56mm thick. Width of face to which boards are fixed should be minimum 50mm. Secure top hats at 610mm centres to every rail using two steel fixings per rail
7. One layer of PROMATECT®-H cover strip 100mm x 9mm thick at horizontal board joints
8. One layer of PROMATECT®-H filler strip 100mm x 9mm thick x depth of the sheeting rail fixed to the rail
9. Fire resistant structural steel column claddings
The following are standard Architectural Specifications for internal partition systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to ____________ minute(1) fire resistance, integrity and ____________ minute(2) insulation in accordance with the criteria of BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(3).

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of $R_w 37$.

Supporting Structure
Care should be taken that any structural element by which the system is supported, e.g. steel structure, concrete/brick wall or slab, has a fire resistance equal to or greater than ____________ minutes(4).

Lining Boards
Single layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing
Galvanised steel sheeting rails will be bolted horizontally at maximum 1800mm centres. Fix galvansied steel top hat sections vertically at 610mm centres. External cladding will be fixed in accordance with manufacturer’s recommendations.

9mm thick PROMATECT®-H boards will be fixed to the steel framing at the internal face. All horizontal joints to be backed with a PROMATECT®-H board strip.

Mineral wool will be contained within the cavity where applicable.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(3). The partition system should meet the requirements as specified under Clause 5.

Jointing
Plain butt joints between machined edges of boards. (5)
Joints filled in preparation for painting. (6)
Joints filled and taped in preparation for decoration. (7)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling(8) in accordance with manufacturer’s recommendations.

NOTES:
• (1) insert required fire resistance level not exceeding 120 minutes.
• (2) insert required insulation level not exceeding the fire resistance level(1).
• (3), (4), (5), (6), (7), (8) delete as appropriate.
• All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
One layer of PROMATECT®-H board 9mm thick, screw fixed to all top hat sections at nominal 300mm centres
2 Horizontal galvanised steel sheeting rails, bolted at maximum 1800mm centres
3 Perimeter galvanised steel angle 25mm x 25mm x 0.56mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
4 Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
5 External cladding sheet either single skin steel or fibre cement (please consult Promat for other types of cladding)
6 Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance

* Details for walls above 3000mm high are available on request

Fire resistance

FRL -/240/15

STANDARD BS476: Part 22: 1987

APPROVAL BRE CC 2317/04

STC
- 38dB (-/120/15)
- 40dB (-/240/15)
- 46dB (-/120/15)
- 50dB (-/240/15)

Rw
- 38dB (-7) (-/120/15)
- 40dB (-7) (-/240/15)
- 46dB (-10) (-/120/15)
- 50dB (-10) (-/240/15)

Acoustic

PREDICTED ASSESSMENT Marshall Day 18th October 2006

Construction

MAXIMUM LENGTH Unlimited

PARTITION THICKNESS
- From 212mm (-/120/15)
- From 215mm (-/240/15)

PARTITION MASS
- From 10.31kg/m² (-/120/15)
- From 13.43kg/m² (-/240/15)

Margin of error is generally within ±3dB

Details for walls above 3000mm high are available on request
1. One layer of PROMATECT®-H board 9mm thick, screw fixed to all top hat sections at nominal 300mm centres
2. One layer of PROMATECT®-H cover strips 100mm x 9mm thick, fixed at horizontal board joints
3. Horizontal galvanised steel sheeting rails, bolted at maximum 1800mm centres
4. Perimeter galvanised steel angle 25mm x 25mm x 0.56mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
5. Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
6. External cladding sheet either single skin steel or fibre cement (please consult Promat for other types of cladding)
7. Existing fire resistant structural steel column cladding
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
The following are standard Architectural Specifications for external wall systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing
Up to 240 minute fire resistance, integrity and 15 minute insulation in accordance with the criteria of BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(1).

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of R_w 39.

Supporting Structure
Care should be taken that any structural element by which the system is supported, e.g. steel structure, concrete/brick wall or slab, has a fire resistance equal to or greater than 240 minutes.

Lining Boards
Single layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing
Galvanised steel sheeting rails will be bolted horizontally at maximum 1800mm centres. Fix galvansied steel top hat sections vertically at 610mm centres. External cladding will be fixed in accordance with manufacturer’s recommendations.

9mm thick PROMATECT®-H boards will be fixed to the steel framing at the internal face. All horizontal joints to be backed with a PROMATECT®-H board strip.
Mineral wool will be contained within the cavity where applicable.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(1). The partition system should meet the requirements as specified under Clause 5.

Jointing
Plain butt joints between machined edges of boards. (1)
Joints filled in preparation for painting. (2)
Joints filled and taped in preparation for decoration. (3)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling(4) in accordance with manufacturer’s recommendations.

NOTES:
- (1), (2), (3), (4) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
Fire resistance

- **FRL**
 - /30/30
 - /60/60
 - /120/120

STANDARD
- AS1530: Part 4: 2005

APPROVAL
- BRE CC 231705

Acoustic

- **# STC**
 - 38dB (-/30/30)
 - 47dB (-/60/60)
 - 48dB (-/120/60)

- **# Rw**
 - 38dB (-/30/30)
 - 46dB (-/60/60)
 - 47dB (-/120/60)

STANDARD

PREDICTED ASSESSMENT
- Marshall Day
 - 18th October 2006

Construction

- **MAXIMUM LENGTH**
 - Unlimited

- **PARTITION THICKNESS**
 - From 242mm

- **PARTITION MASS**
 - From 23.72kg/m² (-/30/30)
 - From 25.56kg/m² (-/60/60)
 - From 29.22kg/m² (-/120/120)

Margin of error is generally within ±3dB

* Details for walls above 3000mm high are available on request

1. One layer PROMATECT®-H board 9mm thick, screw fixed to all top hat sections at nominal 300mm centres
2. One layer of mineral wool

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Mineral wool thickness x minimum density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/30/30</td>
<td>Not required</td>
</tr>
<tr>
<td>-/60/60</td>
<td>80mm x 23kg/m² suspended between the sheeting rails using steel angle 50mm x 25mm x 0.56mm thick or similar, fixed through the mineral wool to the rail at maximum 500mm centres.</td>
</tr>
<tr>
<td>-/120/120</td>
<td>75mm x 100kg/m²</td>
</tr>
</tbody>
</table>

3. Horizontal galvanised steel sheeting rails, bolted at maximum 1800mm centres
4. Perimeter galvanised steel angle 25mm x 25mm x 0.6mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
5. Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
6. 25mm long No. 8 self-tapping screws at nominal 300mm centres
7. External cladding sheet, either single skin steel or fibre cement (please consult Promat for other types of cladding)
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
1. One layer PROMATECT®-H board 9mm thick, screw fixed to all top hat sections at nominal 300mm centres
2. PROMATECT®-H cover strips 100mm x 9mm thick, fixed at horizontal board joints
3. One layer of mineral wool

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Mineral wool thickness x minimum density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/30/30</td>
<td>Not required</td>
</tr>
<tr>
<td>-/60/60</td>
<td>80mm x 23kg/m² suspended between the sheeting rails using steel angle 50mm x 25mm x 0.56mm thick or similar, fixed through the mineral wool to the rail at maximum 500mm centres.</td>
</tr>
<tr>
<td>-/120/120</td>
<td>75mm x 100kg/m³</td>
</tr>
</tbody>
</table>

4. Horizontal galvanised steel sheeting rails, bolted at maximum 1800mm centres
5. Perimeter galvanised steel angle 25mm x 25mm x 0.6mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
6. Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
7. External cladding sheet, either single skin steel or fibre cement (please consult Promat for other types of cladding)
8. Existing fire resistant structural steel column cladding
9. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
The following are standard Architectural Specifications for external wall systems using PROMATECT®-H. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Either Side / Non Loadbearing

Up to _______ minute(1) fire resistance, integrity and _______ minute(2) insulation in accordance with the criteria of BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(3).

Acoustic Performance

The partition system shall have a Weighted Sound Reduction Index of R_w _______(4).

Supporting Structure

Care should be taken that any structural element by which the partition system is supported, e.g. steel structure, concrete/brick wall or slab, has a fire resistance equal to or greater than _______ minutes(5).

Lining Boards

Single layer of 9mm thick PROMATECT®-H matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing

Galvanised steel sheeting rails will be bolted horizontally at maximum 1800mm centres. Fix galvanised steel top hat sections vertically at 610mm centres. External cladding will be fixed at the external part, after PROMATECT®-H boards are fixed. 9mm thick PROMATECT®-H boards will be fixed to the steel framing at the internal and external faces. Cover strips to back all horizontal joints between boards and to separate vertical top hats and sheeting rail.

Tests & Standards

The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(3). The partition system should meet the requirements as specified under Clause 5.

Jointing

Plain butt joints between machined edges of boards. (5)

Joints filled in preparation for painting. (6)

Joints filled and taped in preparation for decoration. (7)

Follow-on Trades

Surface of boards to be prepared for painting/plastering/tiling(6) in accordance with manufacturer’s recommendations.

NOTES:

- (1) insert required fire resistance level not exceeding 120 minutes.
- (2) insert required insulation level not exceeding the fire resistance level(1).
- (3), (5), (6), (7), (8) delete as appropriate.
- (4) insert acoustic value not exceeding 38dB (for -/30/30 fire resistance), 46dB (for -/60/60 fire resistance) or 47dB (for -/120/120 fire resistance).
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
1. One layer of PROMINA® 60 board 9mm thick
2. Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
3. Horizontal galvanised steel sheeting rails. bolted at maximum 1800mm centres
4. Perimeter galvanised steel angle 25mm x 25mm x 0.8mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
5. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
6. External cladding sheet, either single skin steel or fibre cement (please consult Promat for other types of cladding)
1. One layer of PROMINA® 60 board 9mm thick, screw fixed to all top hat sections at nominal 300mm centres
2. One layer of PROMINA® 60 cover strips 100mm x 9mm thick, fixed at horizontal board joints
3. Horizontal galvanised steel sheeting rails. bolted at maximum 1800mm centres
4. Perimeter galvanised steel angle 25mm x 25mm x 0.56mm thick, secured to floor or wall using 40mm long M6 masonry anchors at nominal 500mm centres
5. Vertical galvanised steel top hat sections approximately 26mm x 80mm x 0.56mm thick, secured to every sheeting rail using two steel fixings at 610mm centres per rail (width of the top hat section, facing where boards are fixed at, must be minimum 50mm)
6. External cladding sheet, either single skin steel or fibre cement (please consult Promat for other types of cladding)
7. Existing fire resistant structural steel column cladding
8. Caulk all perimeter gaps with PROMASEAL®-A Acrylic Sealant to achieve the required fire resistance and/or acoustic performance
The following are standard Architectural Specifications for external wall systems using PROMINA® 60. The designer must determine the suitability of the design to the application and requirements before undertaking or constructing any works relating to the specifications and where in doubt should obtain the advice of a suitably qualified engineer.

Fire Attack From Internal Side / Non Loadbearing
Up to 240 minute fire resistance, integrity and 15 minute insulation in accordance with the criteria of BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(1).

Acoustic Performance
The partition system shall have a Weighted Sound Reduction Index of at least $R_w 39$.

Supporting Structure
Care should be taken that any structural element by which the partition system is supported, e.g. steel structure, concrete/brick wall or slab, has a fire resistance equal to or greater than 240 minutes.

Lining Boards
Single layer of 9mm thick PROMINA® 60 matrix engineered mineral boards as manufactured by Promat International (Asia Pacific) Ltd. Standard board dimension 1220mm x 2440mm x 9mm thick.

Fixing
Galvanised steel sheeting rails will be bolted horizontally at maximum 1800mm centres. Fix galvanised steel top hat sections vertically at 610mm centres. External cladding will be fixed at the external part.

9mm thick PROMINA® 60 boards will be fixed to the steel framing at the internal face. All horizontal joints to be backed with a PROMINA® 60 board strip.

Tests & Standards
The complete system along with the material and framing is tested in accordance with BS 476: Part 22: 1987 or AS 1530: Part 4: 2005(1). The partition system should meet the requirements as specified under Clause 5.

Jointing
Plain butt joints between machined edges of boards. (2)
Joints filled in preparation for painting. (3)
Joints filled and taped in preparation for decoration. (4)

Follow-on Trades
Surface of boards to be prepared for painting/plastering/tiling (5) in accordance with manufacturer’s recommendations.

NOTES:
- (1), (2), (3), (4), (5) delete as appropriate.
- All perimeter gaps caulked with PROMASEAL®-A Acrylic Sealant.
For latest information of the Promat Asia Pacific organisation, please refer to www.promat-ap.com.

ASIA PACIFIC HEADQUARTERS
Promat International (Asia Pacific) Ltd.
Unit 19-02-01, Level 2 PNB Damansara
No.19 Lorong Dungun, Damansara Heights
50490 Kuala Lumpur
MALAYSIA
Tel: +60 (3) 2095 5111
Fax: +60 (3) 2095 6111
Email: info@promat-ap.com

HONG KONG
Promat International (Asia Pacific) Ltd.
Room 101, C.C. Wu Building
302-308 Hennessy Road
Wanchai
Tel: +852 2836 3692
Fax: +852 2834 4313
Email: apromath@promat.com.hk

INDIA
Promat (Malaysia) Sdn. Bhd.
(India Representative Office)
610-611, Ansal Imperial Tower
C-Block, Community Centre
Naraina Vihar, Naraina
New Delhi 110029
Tel: +91 (11) 2577 2843
Fax: +91 (11) 2577 4143
Email: info-india@promat-asia.com

SOUTH KOREA
Promat International (Asia Pacific) Ltd.
(Korea Branch Office)
Room 406, 811-2
Yeoksam-dong Gangnam-gu
Seoul 135080
Tel: +82 (70) 7794 8216
Email: apromath@promat.com.hk

AUSTRALIA
Promat Australia Pty. Ltd.
1 Scotland Road
Mile End South, SA 5031
Tel: 1800 PROMAT (776 628)
Fax: +61 (2) 9630 0258
Email: mail@promat.com.au

Victoria Office
Promat Australia Pty. Ltd.
Suite 205, 198 Harbour Esplanade
Docklands, VIC 3008
Tel: 1800 PROMAT (776 628)
Fax: 1800 334 598
Email: mail@promat.com.au

Queensland Office
Promat Australia Pty. Ltd.
1/88 Lisgar Street
Virginia, QLD 4014
Tel: 1800 011 376
Fax: 1800 334 598
Email: mail@promat.com.au

CHINA
Promat China Ltd.
Room 506, Block A, Qi Lin Plaza
13-35 Pan Fu Road
510180 Guangzhou
Tel: +86 (20) 8136 1167
Fax: +86 (20) 8136 1372
Email: info@promat.com.cn

Beijing Office
Promat (North China)
(Division of Promat China Ltd.)
Room 1507 Building 5, SOHO Xiandaicheng
No.88 Jianguo Road, Chaoyang District
100022 Beijing
Tel: +86 (10) 8589 1254
Fax: +86 (10) 8589 2904
Email: info@promat.com.cn

For Promat International and its worldwide group, see www.promat-international.com.

• The technical data provided in this publication is based on mean values prevalent at time of publication and is thus subject to fluctuation. It should not be regarded as a guarantee to system performance.

• All data contained herein conforms to and frequently surpasses generally accepted fire protection standards recognized by most professional fire science practitioners and regulatory authorities worldwide. The same general principle is equally applicable to all Promat products and systems. Promat has access to a considerable body of test authentication data and this can be provided on a complimentary basis upon request. It should be noted however that this publication replaces all previous editions in its entirety. Any form of reproduction by any means – manual, electronic, digital or otherwise – is strictly prohibited and subject to prior approval in writing from Promat. All rights related or connected to the Promat logo, Promat registered trademarks, featured illustrations, written information and technical reports in this publication are the sole, exclusive and copyright property of Promat and its legal partner companies.